16
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Efficacy and safety of baricitinib plus standard of care for the treatment of critically ill hospitalised adults with COVID-19 on invasive mechanical ventilation or extracorporeal membrane oxygenation: an exploratory, randomised, placebo-controlled trial

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The oral, selective Janus kinase 1/2 inhibitor baricitinib has shown efficacy in studies of hospitalised adults with COVID-19. COV-BARRIER (NCT04421027) was a multinational, phase 3, randomised, double-blind, placebo-controlled trial of baricitinib in patients with confirmed SARS-CoV-2 infection. We aimed to evaluate the efficacy and safety of baricitinib plus standard of care in critically ill hospitalised adults with COVID-19 requiring invasive mechanical ventilation or extracorporeal membrane oxygenation.

          Methods

          This exploratory trial followed the study design of COV-BARRIER in a critically ill cohort not included in the main phase 3 trial. The study was conducted across 18 hospitals in Argentina, Brazil, Mexico, and the USA. Participants (aged ≥18 years) hospitalised with laboratory-confirmed SARS-CoV-2 infection on baseline invasive mechanical ventilation or extracorporeal membrane oxygenation were randomly assigned (1:1) to baricitinib (4 mg) or placebo once daily for up to 14 days in combination with standard of care. Participants, study staff, and investigators were masked to study group assignment. Prespecified endpoints included all-cause mortality through days 28 and 60, number of ventilator-free days, duration of hospitalisation, and time to recovery through day 28. The efficacy analysis was done in the intention-to-treat population and the safety analysis was done in the safety population. This trial is registered with ClinicalTrials.gov, NCT04421027.

          Findings

          Between Dec 23, 2020, and April 10, 2021, 101 participants were enrolled into the exploratory trial and assigned to baricitinib (n=51) or placebo (n=50) plus standard of care. Standard of care included baseline systemic corticosteroid use in 87 (86%) participants. Treatment with baricitinib significantly reduced 28-day all-cause mortality compared with placebo (20 [39%] of 51 participants died in the baricitinib group vs 29 [58%] of 50 in the placebo group; hazard ratio [HR] 0·54 [95% CI 0·31–0·96]; p=0·030; 46% relative reduction; absolute risk reduction 19%). A significant reduction in 60-day mortality was also observed in the baricitinib group compared with the placebo group (23 [45%] events vs 31 [62%]; HR 0·56 [95% CI 0·33–0·97]; p=0·027; 44% relative reduction; absolute risk reduction 17%). In every six baricitinib-treated participants, one additional death was prevented compared with placebo at days 28 and 60. The number of ventilator-free days did not differ significantly between treatment groups (mean 8·1 days [SD 10·2] in the baricitinib group vs 5·5 days [8·4] in the placebo group; p=0·21). The mean duration of hospitalisation in baricitinib-treated participants was not significantly shorter than in placebo-treated participants (23·7 days [SD 7·1] vs 26·1 days [3·9]; p=0·050). The rates of infections, blood clots, and adverse cardiovascular events were similar between treatment groups.

          Interpretation

          In critically ill hospitalised patients with COVID-19 who were receiving invasive mechanical ventilation or extracorporeal membrane oxygenation, treatment with baricitinib compared with placebo (in combination with standard of care, including corticosteroids) reduced mortality, which is consistent with the mortality reduction observed in less severely ill patients in the hospitalised primary COV-BARRIER study population. However, this was an exploratory trial with a relatively small sample size; therefore, further phase 3 trials are needed to confirm these findings.

          Funding

          Eli Lilly and Company.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

            Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report

              Abstract Background Coronavirus disease 2019 (Covid-19) is associated with diffuse lung damage. Glucocorticoids may modulate inflammation-mediated lung injury and thereby reduce progression to respiratory failure and death. Methods In this controlled, open-label trial comparing a range of possible treatments in patients who were hospitalized with Covid-19, we randomly assigned patients to receive oral or intravenous dexamethasone (at a dose of 6 mg once daily) for up to 10 days or to receive usual care alone. The primary outcome was 28-day mortality. Here, we report the preliminary results of this comparison. Results A total of 2104 patients were assigned to receive dexamethasone and 4321 to receive usual care. Overall, 482 patients (22.9%) in the dexamethasone group and 1110 patients (25.7%) in the usual care group died within 28 days after randomization (age-adjusted rate ratio, 0.83; 95% confidence interval [CI], 0.75 to 0.93; P<0.001). The proportional and absolute between-group differences in mortality varied considerably according to the level of respiratory support that the patients were receiving at the time of randomization. In the dexamethasone group, the incidence of death was lower than that in the usual care group among patients receiving invasive mechanical ventilation (29.3% vs. 41.4%; rate ratio, 0.64; 95% CI, 0.51 to 0.81) and among those receiving oxygen without invasive mechanical ventilation (23.3% vs. 26.2%; rate ratio, 0.82; 95% CI, 0.72 to 0.94) but not among those who were receiving no respiratory support at randomization (17.8% vs. 14.0%; rate ratio, 1.19; 95% CI, 0.91 to 1.55). Conclusions In patients hospitalized with Covid-19, the use of dexamethasone resulted in lower 28-day mortality among those who were receiving either invasive mechanical ventilation or oxygen alone at randomization but not among those receiving no respiratory support. (Funded by the Medical Research Council and National Institute for Health Research and others; RECOVERY ClinicalTrials.gov number, NCT04381936; ISRCTN number, 50189673.)
                Bookmark

                Author and article information

                Journal
                Lancet Respir Med
                Lancet Respir Med
                The Lancet. Respiratory Medicine
                Elsevier Ltd.
                2213-2600
                2213-2619
                3 February 2022
                3 February 2022
                Affiliations
                [a ]Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
                [b ]Tennessee Valley Veteran's Affairs Geriatric Research Education Clinical Center (GRECC), Nashville, TN, USA
                [c ]Translational Health Sciences, University of Bristol, Bristol, UK
                [d ]Department of Paediatric Rheumatology, Bristol Royal Hospital for Children, Bristol, UK
                [e ]Eli Lilly and Company, Indianapolis, IN, USA
                [f ]Swedish Center for Research and Innovation, Swedish Medical Center, Providence St Joseph Health, Seattle, WA, USA
                [g ]Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle, WA, USA
                [h ]Instituto de Pesquisa Clínica de Campinas (IPECC), Campinas, São Paulo, Brazil
                [i ]Emory University School of Medicine, Rollins School of Public Health, Emory Vaccine Center, Atlanta, GA, USA
                [j ]Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
                Author notes
                [* ]Correspondence to: Prof E Wesley Ely, CIBS Center, Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA
                [†]

                Members are listed in the appendix (p 2)

                Article
                S2213-2600(22)00006-6
                10.1016/S2213-2600(22)00006-6
                8813065
                35123660
                b32871de-1307-49ed-9fba-c7516f604924
                © 2022 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Articles

                Comments

                Comment on this article