23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Landscape changes and human–landscape interaction during the first millennium AD in the Netherlands

      Netherlands Journal of Geosciences
      Cambridge University Press (CUP)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The first millennium AD encompasses the Roman period (12 BC to AD 450) and the Early Middle Ages (AD 450 to 1050). In the Netherlands, this millennium saw population growth, steep decline and subsequent revival. In addition, many changes occurred in the physical landscape, marking a transition from a mainly natural prehistorical lowland landscape to an increasingly human-affected landscape. This paper synthesises the main landscape changes and human–landscape interactions in the Netherlands during this dynamic period. The degree of landscape change is compared between the coastal plain, the delta and the Pleistocene sand area.

          Human activities caused major often unintended geomorphological changes in all studied landscapes. Landscape sensitivity to human impact, however, strongly varied as a function of preceding landscape state. The most prominent changes took place in many parts of the coastal plain, where back-barrier peatlands transformed into open tidal basins. Presence of compaction-prone peat and intensified artificial drainage led to subsidence. This precondition and slow anthropogenic forcing combined, made the area more sensitive to stochastically occurring storms, which could serve as tipping points for large-scale drowning. Eventually, major peatlands turned into tidal areas that for many centuries would remain unsuitable for habitation. Human-induced peatland subsidence also led to the formation of the new Hollandse IJssel and Lek river branches. This marked a major reorganisation of the river network in the lower Rhine–Meuse delta. In the middle and upstream parts of the delta, the landscape was more stable. Yet, settlements on the natural levees show adaption to increasing flooding frequency from the Late Roman period onwards. The settlements shifted towards higher positions, while route networks between them largely remained intact. Smaller-scale landscape changes were found in the Pleistocene sand area. Here, local sand drifting occurred, most frequently occurring close to human movement corridors. Drift sand intensity became larger as population density increased after c.AD 900.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Catastrophic shifts in ecosystems.

          All ecosystems are exposed to gradual changes in climate, nutrient loading, habitat fragmentation or biotic exploitation. Nature is usually assumed to respond to gradual change in a smooth way. However, studies on lakes, coral reefs, oceans, forests and arid lands have shown that smooth change can be interrupted by sudden drastic switches to a contrasting state. Although diverse events can trigger such shifts, recent studies show that a loss of resilience usually paves the way for a switch to an alternative state. This suggests that strategies for sustainable management of such ecosystems should focus on maintaining resilience.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            2500 years of European climate variability and human susceptibility.

            Climate variations influenced the agricultural productivity, health risk, and conflict level of preindustrial societies. Discrimination between environmental and anthropogenic impacts on past civilizations, however, remains difficult because of the paucity of high-resolution paleoclimatic evidence. We present tree ring-based reconstructions of central European summer precipitation and temperature variability over the past 2500 years. Recent warming is unprecedented, but modern hydroclimatic variations may have at times been exceeded in magnitude and duration. Wet and warm summers occurred during periods of Roman and medieval prosperity. Increased climate variability from ~250 to 600 C.E. coincided with the demise of the western Roman Empire and the turmoil of the Migration Period. Such historical data may provide a basis for counteracting the recent political and fiscal reluctance to mitigate projected climate change.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The prehistoric and preindustrial deforestation of Europe

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Netherlands Journal of Geosciences
                Netherlands Journal of Geosciences
                Cambridge University Press (CUP)
                0016-7746
                1573-9708
                2021
                April 30 2021
                2021
                : 100
                Article
                10.1017/njg.2021.8
                b31f3c87-6b30-4d7c-8dc0-166f3947172d
                © 2021

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article