1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Groundwater contamination modelling in Ayad River Basin, Udaipur

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Groundwater, a vital freshwater resource catering to agricultural, domestic, and industrial needs, faces a pressing challenge of contamination due to escalating human activities. This study focuses on the Ayad River Basin in the Udaipur district of Rajasthan, employing the FEFLOW simulation code for the first time. A steady-state numerical model and a groundwater contaminant prediction model for total dissolved solids (TDS), nitrate, and fluoride were developed, simulating trends over the next five years with an accuracy exceeding 95%. The results reveal an eastward increase in TDS, nitrate, and fluoride concentrations, attributed to contamination from two waste disposal sites-Titadi and Baleecha. Titadi, operational for four decades until closure in 2010, retains residual waste over 32 thousand m 2. The initiation of a new dumping ground at Baleecha by the Udaipur Municipal Corporation post-2010 exacerbates regional contamination. Nitrate contamination is particularly high in agricultural zones with excessive chemical fertilizer usage. Of the 27 scenarios tested, 23 support using the water for irrigation but would require treatment before using it for drinking. Recommendations include deploying a chemical sensor network for real-time data input into the web enabled FEFLOW model, real-time monitoring and alerts, and a mobile application providing personalized guidance on water usage and health risks in case of contamination. This study can be beneficial to decision-makers, who work on the policy and groundwater management strategies.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The toxicology of climate change: Environmental contaminants in a warming world

            Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation may experience enhanced volatilization of POPs and pesticides to the atmosphere. Reduced precipitation will also increase air pollution in urbanized regions resulting in negative health effects, which may be exacerbated by temperature increases. Regions subject to increased precipitation will have lower levels of air pollution, but will likely experience enhanced surface deposition of airborne POPs and increased run-off of pesticides. Moreover, increases in the intensity and frequency of storm events linked to climate change could lead to more severe episodes of chemical contamination of water bodies and surrounding watersheds. Changes in salinity may affect aquatic organisms as an independent stressor as well as by altering the bioavailability and in some instances increasing the toxicity of chemicals. A paramount issue will be to identify species and populations especially vulnerable to climate-pollutant interactions, in the context of the many other physical, chemical, and biological stressors that will be altered with climate change. Moreover, it will be important to predict tipping points that might trigger or accelerate synergistic interactions between climate change and contaminant exposures.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              CAPILLARY CONDUCTION OF LIQUIDS THROUGH POROUS MEDIUMS

              L Richards (1931)
                Bookmark

                Author and article information

                Contributors
                kupa@dhigroup.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                18 July 2024
                18 July 2024
                2024
                : 14
                : 16624
                Affiliations
                GRID grid.464806.8, DHI (India) Water & Environment Pvt Ltd., ; New Delhi, India
                Article
                67752
                10.1038/s41598-024-67752-w
                11258304
                39026035
                b305a9b2-5415-4855-a6d0-23016f5a0eba
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

                History
                : 19 February 2024
                : 15 July 2024
                Funding
                Funded by: The author received no financial support for the research, authorship, and/or publication of this article.
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                groundwater,contamination,feflow model,ayad river,udaipur,environmental chemistry,pollution remediation

                Comments

                Comment on this article