15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endothelial and Astrocytic Support by Human Bone Marrow Stem Cell Grafts into Symptomatic ALS Mice towards Blood-Spinal Cord Barrier Repair

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vascular pathology, including blood-CNS barrier (B-CNS-B) damage via endothelial cell (EC) degeneration, is a recently recognized hallmark of Amyotrophic Lateral Sclerosis (ALS) pathogenesis. B-CNS-B repair may be a new therapeutic approach for ALS. This study aimed to determine effects of transplanted unmodified human bone marrow CD34+ (hBM34+) cells into symptomatic G93A mice towards blood-spinal cord barrier (BSCB) repair. Thirteen weeks old G93A mice intravenously received one of three different doses of hBM34+ cells. Cell-treated, media-treated, and control mice were euthanized at 17 weeks of age. Immunohistochemical (anti-human vWF, CD45, GFAP, and Iba-1) and motor neuron histological analyses were performed in cervical and lumbar spinal cords. EB levels in spinal cord parenchyma determined capillary permeability. Transplanted hBM34+ cells improved behavioral disease outcomes and enhanced motor neuron survival, mainly in high-cell-dose mice. Transplanted cells differentiated into ECs and engrafted within numerous capillaries. Reduced astrogliosis, microgliosis, and enhanced perivascular end-feet astrocytes were also determined in spinal cords, mostly in high-cell-dose mice. These mice also showed significantly decreased parenchymal EB levels. EC differentiation, capillary engraftment, reduced capillary permeability, and re-established perivascular end-feet astrocytes in symptomatic ALS mice may represent BSCB repair processes, supporting hBM34+ cell transplantation as a future therapeutic strategy for ALS patients.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Central nervous system pericytes in health and disease.

          Pericytes are uniquely positioned within the neurovascular unit to serve as vital integrators, coordinators and effectors of many neurovascular functions, including angiogenesis, blood-brain barrier (BBB) formation and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow and clearance of toxic cellular byproducts necessary for proper CNS homeostasis and neuronal function. New studies have revealed that pericyte deficiency in the CNS leads to BBB breakdown and brain hypoperfusion resulting in secondary neurodegenerative changes. Here we review recent progress in understanding the biology of CNS pericytes and their role in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Amyotrophic lateral sclerosis

            Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by progressive muscular paralysis reflecting degeneration of motor neurones in the primary motor cortex, corticospinal tracts, brainstem and spinal cord. Incidence (average 1.89 per 100,000/year) and prevalence (average 5.2 per100,000) are relatively uniform in Western countries, although foci of higher frequency occur in the Western Pacific. The mean age of onset for sporadic ALS is about 60 years. Overall, there is a slight male prevalence (M:F ratio~1.5:1). Approximately two thirds of patients with typical ALS have a spinal form of the disease (limb onset) and present with symptoms related to focal muscle weakness and wasting, where the symptoms may start either distally or proximally in the upper and lower limbs. Gradually, spasticity may develop in the weakened atrophic limbs, affecting manual dexterity and gait. Patients with bulbar onset ALS usually present with dysarthria and dysphagia for solid or liquids, and limbs symptoms can develop almost simultaneously with bulbar symptoms, and in the vast majority of cases will occur within 1–2 years. Paralysis is progressive and leads to death due to respiratory failure within 2–3 years for bulbar onset cases and 3–5 years for limb onset ALS cases. Most ALS cases are sporadic but 5–10% of cases are familial, and of these 20% have a mutation of the SOD1 gene and about 2–5% have mutations of the TARDBP (TDP-43) gene. Two percent of apparently sporadic patients have SOD1 mutations, and TARDBP mutations also occur in sporadic cases. The diagnosis is based on clinical history, examination, electromyography, and exclusion of 'ALS-mimics' (e.g. cervical spondylotic myelopathies, multifocal motor neuropathy, Kennedy's disease) by appropriate investigations. The pathological hallmarks comprise loss of motor neurones with intraneuronal ubiquitin-immunoreactive inclusions in upper motor neurones and TDP-43 immunoreactive inclusions in degenerating lower motor neurones. Signs of upper motor neurone and lower motor neurone damage not explained by any other disease process are suggestive of ALS. The management of ALS is supportive, palliative, and multidisciplinary. Non-invasive ventilation prolongs survival and improves quality of life. Riluzole is the only drug that has been shown to extend survival.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular biology of amyotrophic lateral sclerosis: insights from genetics.

              Amyotrophic lateral sclerosis (ALS) is a paralytic disorder caused by motor neuron degeneration. Mutations in more than 50 human genes cause diverse types of motor neuron pathology. Moreover, defects in five Mendelian genes lead to motor neuron disease, with two mutations reproducing the ALS phenotype. Analyses of these genetic effects have generated new insights into the diverse molecular pathways involved in ALS pathogenesis. Here, we present an overview of the mechanisms for motor neuron death and of the role of non-neuronal cells in ALS.
                Bookmark

                Author and article information

                Contributors
                sgarbuzo@health.usf.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                13 April 2017
                13 April 2017
                2017
                : 7
                : 884
                Affiliations
                [1 ]GRID grid.170693.a, Center of Excellence for Aging & Brain Repair, , University of South Florida, Morsani College of Medicine, ; Tampa, Florida 33612 United States of America
                [2 ]GRID grid.170693.a, Department of Neurosurgery and Brain Repair, , University of South Florida, Morsani College of Medicine, ; Tampa, Florida 33612 United States of America
                [3 ]GRID grid.170693.a, Department of Molecular Pharmacology and Physiology, , University of South Florida, Morsani College of Medicine, ; Tampa, Florida 33612 United States of America
                [4 ]GRID grid.170693.a, Department of Pathology and Cell Biology, , University of South Florida, Morsani College of Medicine, ; Tampa, Florida 33612 United States of America
                [5 ]GRID grid.170693.a, Department of Psychiatry, , University of South Florida, Morsani College of Medicine, ; Tampa, Florida 33612 United States of America
                Article
                993
                10.1038/s41598-017-00993-0
                5429840
                28408761
                b2bc25ba-346e-4e6d-a0ca-79881dc50ce5
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 5 January 2017
                : 17 March 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content271

                Cited by25

                Most referenced authors1,926