24
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-145 inhibits the activation of the mTOR signaling pathway to suppress the proliferation and invasion of invasive pituitary adenoma cells by targeting AKT3 in vivo and in vitro

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          This study was designed to explore how miR-145 regulates the mTOR signaling pathway in invasive pituitary adenoma (IPA) by targeting AKT3.

          Methods

          A total of 71 cases of IPA tissues and 66 cases of non-IPA tissues were obtained in this study. In vitro, the IPA cells were assigned into blank control, empty plasmid, miR-145 mimic, miR-145 inhibitor, miR-145 mimic + rapamycin, miR-145 inhibitor + rapamycin and rapamycin groups. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were performed to detect the protein expressions of PI3K, AKT3, mTOR mRNA and the mRNA expression of miR-145 both in vivo and in vitro. Additionally, the S6K and RPS6 mRNA and protein expressions as well as the relative phosphorylation levels were determined in vitro. MTT assay, flow cytometry and transwell assay were used to testify the cell proliferation, apoptosis and invasion ability, respectively.

          Results

          The IPA tissues exhibited significantly lower expression of miR-145 but higher PI3K, AKT3 and mTOR mRNA and protein expressions when compared with the non-IPA tissues. Compared with the blank control and empty plasmid groups, the miR-145 mimic group showed significantly decreased PI3K, AKT3, mTOR, S6K and RPS6 mRNA and protein expressions as well as phosphorylation levels; besides, the IPA cell proliferation, migration and invasion ability were strongly inhibited, accompanied with the increased number of apoptotic cells. In the miR-145 inhibitor group, the PI3K, AKT3, mTOR, S6K and RPS6 mRNA and protein expressions as well as the phosphorylation levels were significantly increased; cell proliferation, migration and invasion ability were remarkably elevated, accompanied with reduced apoptotic cell number.

          Conclusion

          The study demonstrates that miR-145 inhibits the mTOR signaling pathway to suppress the IPA cell proliferation and invasion and promotes its apoptosis by targeting AKT3.

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          miR-145 and miR-143 Regulate Smooth Muscle Cell Fate Decisions

          SUMMARY microRNAs are regulators of myriad cellular events, but evidence for a single microRNA that can efficiently differentiate multipotent cells into a specific lineage or regulate direct reprogramming of cells into an alternate cell fate has been elusive. Here, we show that miR-145 and miR-143 are co-transcribed in multipotent cardiac progenitors before becoming localized to smooth muscle cells, including neural crest stem cell–derived vascular smooth muscle cells. miR-145 and miR-143 were direct transcriptional targets of serum response factor, myocardin and Nkx2.5, and were downregulated in injured or atherosclerotic vessels containing proliferating, less differentiated smooth muscle cells. miR-145 was necessary for myocardin-induced reprogramming of adult fibroblasts into smooth muscle cells and sufficient to induce differentiation of multipotent neural crest stem cells into vascular smooth muscle. Furthermore, miR-145 and miR-143 cooperatively targeted a network of transcription factors, including Klf4, myocardin, and Elk-1 to promote differentiation and repress proliferation of smooth muscle cells. These findings demonstrate that miR-145 can direct the smooth muscle fate and that miR-145 and miR-143 function to regulate the quiescent versus proliferative phenotype of smooth muscle cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity.

            The serine/threonine kinase Akt is an upstream positive regulator of the mammalian target of rapamycin (mTOR). However, the mechanism by which Akt activates mTOR is not fully understood. The known pathway by which Akt activates mTOR is via direct phosphorylation and inhibition of tuberous sclerosis complex 2 (TSC2), which is a negative regulator of mTOR. Here we establish an additional pathway by which Akt inhibits TSC2 and activates mTOR. We provide for the first time genetic evidence that Akt regulates intracellular ATP level and demonstrate that Akt is a negative regulator of the AMP-activated protein kinase (AMPK), which is an activator of TSC2. We show that in Akt1/Akt2 DKO cells AMP/ATP ratio is markedly elevated with concomitant increase in AMPK activity, whereas in cells expressing activated Akt there is a dramatic decrease in AMP/ATP ratio and a decline in AMPK activity. Currently, the Akt-mediated phosphorylation of TSC2 and the inhibition of AMPK-mediated phosphorylation of TSC2 are viewed as two separate pathways, which activate mTOR. Our results demonstrate that Akt lies upstream of these two pathways and induces full inhibition of TSC2 and activation of mTOR both through direct phosphorylation and by inhibition of AMPK-mediated phosphorylation of TSC2. We propose that the activation of mTOR by Akt-mediated cellular energy and inhibition of AMPK is the predominant pathway by which Akt activates mTOR in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of novel microRNA targets based on microRNA signatures in bladder cancer.

              MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate protein-coding genes. To identify miRNAs that have a tumor suppressive function in bladder cancer (BC), 156 miRNAs were screened in 14 BCs, 5 normal bladder epithelium (NBE) samples and 3 BC cell lines. We identified a subset of 7 miRNAs (miR-145, miR-30a-3p, miR-133a, miR-133b, miR-195, miR-125b and miR-199a*) that were significantly downregulated in BCs. To confirm these results, 104 BCs and 31 NBEs were subjected to real-time RT-PCR-based experiments, and the expression levels of each miRNA were significantly downregulated in BCs (p 70%) and specificity (>75%) to distinguish BC from NBE. Our target search algorithm and gene-expression profiling in BCs (Kawakami et al., Oncol Rep 2006;16:521-31) revealed that Keratin7 (KRT7) mRNA was a common target of the downregulated miRNAs, and the mRNA expression levels of KRT7 were significantly higher in BCs than in NBEs (p = 0.0004). Spearman rank correlation analysis revealed significant inverse correlations between KRT7 mRNA expression and each downregulated miRNA (p < 0.0001 in all). Gain-of-function analysis revealed that KRT7 mRNA was significantly reduced by transfection of 3 miRNAs (miR-30-3p, miR-133a and miR-199a*) in the BC cell line (KK47). In addition, significant decreases in cell growth were observed after transfection of 3 miRNAs and si-KRT7 in KK47, suggesting that miR-30-3p, miR-133a and miR-199a* may have a tumor suppressive function through the mechanism underlying transcriptional repression of KRT7. Copyright 2009 UICC.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OncoTargets and Therapy
                OncoTargets and therapy
                Dove Medical Press
                1178-6930
                2017
                16 March 2017
                : 10
                : 1625-1635
                Affiliations
                Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
                Author notes
                Correspondence: Ting-Rong Zhang, Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, No 137, Liyu Mountain South Road, New Downtown District, Urumqi 830054, People’s Republic of China, Tel +86 137 0991 6396, Email Zhangtingrong999@ 123456sohu.com
                Article
                ott-10-1625
                10.2147/OTT.S118391
                5360400
                b2b41c65-8e7a-4acc-84b5-6a56feaf7fbd
                © 2017 Zhou et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Oncology & Radiotherapy
                invasive pituitary adenoma,microrna-145,mtor signaling pathway,proliferation,invasion,akt3

                Comments

                Comment on this article