13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Simultaneous Detection of Clostridioides difficile Glutamate Dehydrogenase and Toxin A/B: Comparison of the C. DIFF QUIK CHEK COMPLETE and RIDASCREEN Assays

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Various commercial assays have recently been developed for detecting glutamate dehydrogenase (GDH) and/or toxin A/B to diagnose Clostridioides difficile infection (CDI). We compared the performance of two assays for the simultaneous detection of C. difficile GDH and toxin A/B, using 150 stool samples: C. DIFF QUIK CHEK COMPLETE (QCC; TechLab, Blacksburg, VA, USA) and RIDASCREEN Clostridium difficile GDH (RC-GDH) and Toxin A/B (RC-Toxin A/B; R-Biopharm, Darmstadt, Germany). For GDH detection, QCC and RC-GDH showed satisfactory sensitivity (95.7% and 94.3%, respectively) and specificity (92.5% and 93.8%, respectively) compared with C. difficile culture. For toxin A/B detection, QCC showed higher sensitivity than RC-Toxin A/B (60.0% vs 33.3%, P<0.001) compared with toxigenic C. difficile culture. When the results of QCC or RC-GDH+RC-Toxin A/B were used as the first step of a two-step algorithm for diagnosing CDI, QCC permitted more accurate discrimination than RC of positive or negative results for CDI (77.3% and 65.3%, respectively). QCC is useful for the simultaneous detection of C. difficile GDH and toxin A/B as a part of the two-step algorithm for diagnosing CDI.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA)

          A panel of experts was convened by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA) to update the 2010 clinical practice guideline on Clostridium difficile infection (CDI) in adults. The update, which has incorporated recommendations for children (following the adult recommendations for epidemiology, diagnosis, and treatment), includes significant changes in the management of this infection and reflects the evolving controversy over best methods for diagnosis. Clostridium difficile remains the most important cause of healthcare-associated diarrhea and has become the most commonly identified cause of healthcare-associated infection in adults in the United States. Moreover, C. difficile has established itself as an important community pathogen. Although the prevalence of the epidemic and virulent ribotype 027 strain has declined markedly along with overall CDI rates in parts of Europe, it remains one of the most commonly identified strains in the United States where it causes a sizable minority of CDIs, especially healthcare-associated CDIs. This guideline updates recommendations regarding epidemiology, diagnosis, treatment, infection prevention, and environmental management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiplex PCR targeting tpi (triose phosphate isomerase), tcdA (Toxin A), and tcdB (Toxin B) genes for toxigenic culture of Clostridium difficile.

            A multiplex PCR toxigenic culture approach was designed for simultaneous identification and toxigenic type characterization of Clostridium difficile isolates. Three pairs of primers were designed for the amplification of (i) a species-specific internal fragment of the tpi (triose phosphate isomerase) gene, (ii) an internal fragment of the tcdB (toxin B) gene, and (iii) an internal fragment of the tcdA (toxin A) gene allowing distinction between toxin A-positive, toxin B-positive (A+B+) strains and toxin A-negative, toxin B-positive (A-B+) variant strains. The reliability of the multiplex PCR was established by using a panel of 72 C. difficile strains including A+B+, A-B-, and A-B+ toxigenic types and 11 other Clostridium species type strains. The multiplex PCR assay was then included in a toxigenic culture approach for the detection, identification, and toxigenic type characterization of C. difficile in 1,343 consecutive human and animal stool samples. Overall, 111 (15.4%) of 721 human samples were positive for C. difficile; 67 (60.4%) of these samples contained A+B+ toxigenic isolates, and none of them contained A-B+ variant strains. Fifty (8%) of 622 animal samples contained C. difficile strains, which were toxigenic in 27 (54%) cases, including 1 A-B+ variant isolate. Eighty of the 721 human stool samples (37 positive and 43 negative for C. difficile culture) were comparatively tested by Premier Toxins A&B (Meridian Bioscience) and Triage C. difficile Panel (Biosite) immunoassays, the results of which were found concordant with toxigenic culture for 82.5 and 92.5% of the samples, respectively. The multiplex PCR toxigenic culture scheme described here allows combined diagnosis and toxigenic type characterization for human and animal C. difficile intestinal infections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of nine commercially available Clostridium difficile toxin detection assays, a real-time PCR assay for C. difficile tcdB, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture methods.

              The continuing rise in the incidence of Clostridium difficile infection is a cause for concern, with implications for patients and health care systems. Laboratory diagnosis largely relies on rapid toxin detection kits, although assays detecting alternative targets, including glutamate dehydrogenase (GDH) and toxin genes, are now available. Six hundred routine diagnostic diarrheal samples were tested prospectively using nine commercial toxin detection assays, cytotoxin assay (CYT), and cytotoxigenic culture (CYTGC) and retrospectively using a GDH detection assay and PCR for the toxin B gene. The mean sensitivity and specificity for toxin detection assays were 82.8% (range, 66.7 to 91.7%) and 95.4% (range, 90.9 to 98.8%), respectively, in comparison with CYT and 75.0% (range, 60.0 to 86.4%) and 96.1% (91.4 to 99.4%), respectively, in comparison with CYTGC. The sensitivity and specificity of the GDH assay were 90.1% and 92.9%, respectively, compared to CYT and 87.6% and 94.3%, respectively, compared to CYTGC. The PCR assay had the highest sensitivity of all the tests in comparison with CYT (92.2%) and CYTGC (88.5%), and the specificities of the PCR assay were 94.0% and 95.4% compared to CYT and CYTGC, respectively. All kits had low positive predictive values (range, 48.6 to 86.8%) compared with CYT, assuming a positive sample prevalence of 10% (representing the hospital setting), which compromises the clinical utility of single tests for the laboratory diagnosis of C. difficile infection. The optimum rapid single test was PCR for toxin B gene, as this had the highest negative predictive value. Diagnostic algorithms that optimize test combinations for the laboratory diagnosis of C. difficile infection need to be defined.
                Bookmark

                Author and article information

                Journal
                Ann Lab Med
                Ann Lab Med
                ALM
                Annals of Laboratory Medicine
                The Korean Society for Laboratory Medicine
                2234-3806
                2234-3814
                March 2019
                13 November 2018
                : 39
                : 2
                : 214-217
                Affiliations
                Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
                Author notes
                Corresponding author: Nam Yong Lee, M.D. Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea. Tel: +82-2-3410-2706, Fax: +82-2-3410-2719, micro.lee@ 123456samsung.com
                Co-corresponding author: Hee Jae Huh., M.D. Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea. Tel: +82-2-3410-1836, Fax: +82-2-3410-2719, pmhhj77@ 123456gmail.com
                Author information
                https://orcid.org/0000-0001-8999-7561
                https://orcid.org/0000-0003-3688-0145
                Article
                10.3343/alm.2019.39.2.214
                6240517
                30430786
                b2b2674a-c117-4bfe-a87e-1fd9e2c8ede2
                © The Korean Society for Laboratory Medicine

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 May 2018
                : 16 July 2018
                : 27 September 2018
                Categories
                Brief Communication
                Clinical Microbiology

                Clinical chemistry
                clostridioides difficile,glutamate dehydrogenase,toxin a/b,performance,algorithm

                Comments

                Comment on this article