22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mammalian inosine triphosphatase encoded by ITPA gene hydrolyzes ITP and dITP to monophosphates, avoiding their deleterious effects. Itpa mice exhibited perinatal lethality, and significantly higher levels of inosine in cellular RNA and deoxyinosine in nuclear DNA were detected in Itpa embryos than in wild-type embryos. Therefore, we examined the effects of ITPA deficiency on mouse embryonic fibroblasts (MEFs). Itpa primary MEFs lacking ITP-hydrolyzing activity exhibited a prolonged doubling time, increased chromosome abnormalities and accumulation of single-strand breaks in nuclear DNA, compared with primary MEFs prepared from wild-type embryos. However, immortalized Itpa MEFs had neither of these phenotypes and had a significantly higher ITP/IDP-hydrolyzing activity than Itpa embryos or primary MEFs. Mammalian NUDT16 proteins exhibit strong dIDP/IDP-hydrolyzing activity and similarly low levels of Nudt16 mRNA and protein were detected in primary MEFs derived from both wild-type and Itpa embryos. However, immortalized Itpa MEFs expressed significantly higher levels of Nudt16 than the wild type. Moreover, introduction of silencing RNAs against Nudt16 into immortalized Itpa MEFs reproduced ITPA-deficient phenotypes. We thus conclude that NUDT16 and ITPA play a dual protective role for eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship.

          DNA double-strand breaks (DSBs) arise in cells from endogenous and exogenous attacks on the DNA backbone, but also as a direct consequence of replication failures. Proper repair of all these DSBs is essential for genome stability. Repair of broken chromosomes is a challenge for dividing cells that need to distribute equal genetic information to daughter cells. Consequently, eukaryotic organisms have evolved multi-potent and efficient mechanisms to repair DSBs that are primarily divided into two types of pathways: nonhomologous end joining (NHEJ) and homologous recombination (HR). Here we briefly describe how eukaryotic cells sense DSBs and trigger cell cycle arrest to allow repair, and we review the mechanisms of both NHEJ and HR pathways and the choice between them. (Part of a Multi-author Review).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two distinct pathways of cell death triggered by oxidative damage to nuclear and mitochondrial DNAs.

            Oxidative base lesions, such as 8-oxoguanine (8-oxoG), accumulate in nuclear and mitochondrial DNAs under oxidative stress, resulting in cell death. However, it is not known which form of DNA is involved, whether nuclear or mitochondrial, nor is it known how the death order is executed. We established cells which selectively accumulate 8-oxoG in either type of DNA by expression of a nuclear or mitochondrial form of human 8-oxoG DNA glycosylase in OGG1-null mouse cells. The accumulation of 8-oxoG in nuclear DNA caused poly-ADP-ribose polymerase (PARP)-dependent nuclear translocation of apoptosis-inducing factor, whereas that in mitochondrial DNA caused mitochondrial dysfunction and Ca2+ release, thereby activating calpain. Both cell deaths were triggered by single-strand breaks (SSBs) that had accumulated in the respective DNAs, and were suppressed by knockdown of adenine DNA glycosylase encoded by MutY homolog, thus indicating that excision of adenine opposite 8-oxoG lead to the accumulation of SSBs in each type of DNA. SSBs in nuclear DNA activated PARP, whereas those in mitochondrial DNA caused their depletion, thereby initiating the two distinct pathways of cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase.

              Oxygen radicals, which can be produced through normal cellular metabolism, are thought to play an important role in mutagenesis and tumorigenesis. Among various classes of oxidative DNA damage, 8-oxo-7,8-dihydroguanine (8-oxoG) is most important because of its abundance and mutagenicity. The MTH1 gene encodes an enzyme that hydrolyzes 8-oxo-dGTP to monophosphate in the nucleotide pool, thereby preventing occurrence of transversion mutations. By means of gene targeting, we have established MTH1 gene-knockout cell lines and mice. When examined 18 months after birth, a greater number of tumors were formed in the lungs, livers, and stomachs of MTH1-deficient mice, as compared with wild-type mice. The MTH1-deficient mouse will provide a useful model for investigating the role of the MTH1 protein in normal conditions and under oxidative stress.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                May 2010
                May 2010
                15 January 2010
                15 January 2010
                : 38
                : 9
                : 2891-2903
                Affiliations
                Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
                Author notes
                *To whom correspondence should be addressed. Tel: +81 92 642 6800; Fax: +81 92 642 6791; Email: yusaku@ 123456bioreg.kyushu-u.ac.jp
                Correspondence may also be addressed to Daisuke Tsuchimoto. Tel: +81 92 642 6802; Fax: +81 92 642 6804; Email: daisuke@ 123456bioreg.kyushu-u.ac.jp

                Present addresses: Mizuki Ohno, Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan

                Mehrdad Behmanesh, Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran

                Article
                gkp1250
                10.1093/nar/gkp1250
                2875033
                20081199
                b29703eb-dcd0-497d-974c-75a6e2a67d33
                © The Author(s) 2010. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 November 2009
                : 20 December 2009
                : 26 December 2009
                Categories
                Genome Integrity, Repair and Replication

                Genetics
                Genetics

                Comments

                Comment on this article