37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epidemiology of respiratory viral infections in two long-term refugee camps in Kenya, 2007-2010

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Refugees are at risk for poor outcomes from acute respiratory infections (ARI) because of overcrowding, suboptimal living conditions, and malnutrition. We implemented surveillance for respiratory viruses in Dadaab and Kakuma refugee camps in Kenya to characterize their role in the epidemiology of ARI among refugees.

          Methods

          From 1 September 2007 through 31 August 2010, we obtained nasopharyngeal (NP) and oropharyngeal (OP) specimens from patients with influenza-like illness (ILI) or severe acute respiratory infections (SARI) and tested them by RT-PCR for adenovirus (AdV), respiratory syncytial virus (RSV), human metapneumovirus (hMPV), parainfluenza viruses (PIV), and influenza A and B viruses. Definitions for ILI and SARI were adapted from those of the World Health Organization. Proportions of cases associated with viral aetiology were calculated by camp and by clinical case definition. In addition, for children < 5 years only, crude estimates of rates due to SARI per 1000 were obtained.

          Results

          We tested specimens from 1815 ILI and 4449 SARI patients (median age = 1 year). Proportion positive for virus were AdV, 21.7%; RSV, 12.5%; hMPV, 5.7%; PIV, 9.4%; influenza A, 9.7%; and influenza B, 2.6%; 49.8% were positive for at least one virus. The annual rate of SARI hospitalisation for 2007-2010 was 57 per 1000 children per year. Virus-positive hospitalisation rates were 14 for AdV; 9 for RSV; 6 for PIV; 4 for hMPV; 5 for influenza A; and 1 for influenza B. The rate of SARI hospitalisation was highest in children < 1 year old (156 per 1000 child-years). The ratio of rates for children < 1 year and 1 to < 5 years old was 3.7:1 for AdV, 5.5:1 for RSV, 4.4:1 for PIV, 5.1:1 for hMPV, 3.2:1 for influenza A, and 2.2:1 for influenza B. While SARI hospitalisation rates peaked from November to February in Dadaab, no distinct seasonality was observed in Kakuma.

          Conclusions

          Respiratory viral infections, particularly RSV and AdV, were associated with high rates of illness and make up a substantial portion of respiratory infection in these two refugee settings.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Respiratory syncytial virus and parainfluenza virus.

          C Hall (2001)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemiology and etiology of childhood pneumonia.

            Childhood pneumonia is the leading single cause of mortality in children aged less than 5 years. The incidence in this age group is estimated to be 0.29 episodes per child-year in developing and 0.05 episodes per child-year in developed countries. This translates into about 156 million new episodes each year worldwide, of which 151 million episodes are in the developing world. Most cases occur in India (43 million), China (21 million) and Pakistan (10 million), with additional high numbers in Bangladesh, Indonesia and Nigeria (6 million each). Of all community cases, 7-13% are severe enough to be life-threatening and require hospitalization. Substantial evidence revealed that the leading risk factors contributing to pneumonia incidence are lack of exclusive breastfeeding, undernutrition, indoor air pollution, low birth weight, crowding and lack of measles immunization. Pneumonia is responsible for about 19% of all deaths in children aged less than 5 years, of which more than 70% take place in sub-Saharan Africa and south-east Asia. Although based on limited available evidence, recent studies have identified Streptococcus pneumoniae, Haemophilus influenzae and respiratory syncytial virus as the main pathogens associated with childhood pneumonia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma

              Background Severe lower respiratory infections (LRIs) and atopic sensitization have been identified as independent risk factors for asthma. Objective The nature of potential interactions between these risk factors was the subject of this study. Methods A community-based cohort of 198 children at high atopic risk was followed from birth to 5 years. All episodes of acute respiratory illness in the first year were recorded and postnasal aspirates were collected for viral identification. History of wheeze and asthma was collected annually, and atopy was assessed at 6 months, 2 years, and 5 years. Results A total of 815 episodes of acute respiratory illness were reported, and 33% were LRIs. Viruses were detected in 69% of aspirates, most commonly rhinoviruses (48.3%) and respiratory syncytial virus (10.9%). At 5 years, 28.3%(n = 56) had current wheeze, and this was associated with wheezy [odds ratio (OR), 3.4 (1.2-9.7); P = .02] and/or febrile LRI [OR, 3.9 (1.4-10.5); P = .007], in particular those caused by respiratory syncytial virus or rhinoviruses [OR, 4.1 (1.3-12.6); P = .02]. Comparable findings were made for current asthma. Strikingly these associations were restricted to children who displayed early sensitization (≤2 years old) and not observed in nonatopic patients or those sensitized later. Conclusion These data suggest viral infections interact with atopy in infancy to promote later asthma. Notably the occurrence of both of these events during this narrow developmental window is associated with maximal risk for subsequent asthma, which suggests a contribution from both classes of inflammatory insults to disease pathogenesis. Clinical implications Protection of “high-risk” children against the effects of severe respiratory infections during infancy may represent an effective strategy for primary asthma prevention. The potential benefits of these strategies merit more careful evaluation in this age group.
                Bookmark

                Author and article information

                Journal
                BMC Infect Dis
                BMC Infect. Dis
                BMC Infectious Diseases
                BioMed Central
                1471-2334
                2012
                17 January 2012
                : 12
                : 7
                Affiliations
                [1 ]US Centers for Disease Control and Prevention, Nairobi, Kenya
                [2 ]Kenya Medical Research Institute, Nairobi, Kenya
                [3 ]US Centers for Disease Control and Prevention, Atlanta, GA, USA
                [4 ]United Nations High Commissioner for Refugees, Nairobi, Kenya
                [5 ]Ministry of Public Health and Sanitation, Nairobi, Kenya
                [6 ]International Rescue Committee, Nairobi, Kenya
                [7 ]KEMRI/CDC, Mbagathi Road off Mbagathi Way, KEMRI Compound, P.O. Box 606, Nairobi 00621, Kenya
                Article
                1471-2334-12-7
                10.1186/1471-2334-12-7
                3398263
                22251705
                b295a3fd-745a-4386-84c3-7cff75fa8ce8
                Copyright ©2012 Ahmed et al; licensee BioMed Central Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 September 2011
                : 17 January 2012
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article