3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Correction: Development of a novel immunoproteasome digestion assay for synthetic long peptide vaccine design

      correction

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are typographical errors in the fourth and fifth sentences of the Abstract. “IFN-μ” should appear as “IFN-γ.” The correct sentences are: However, to confirm whether a multivalent vaccine can induce an individual epitope-specific CTL, the only viable screening strategies currently available are interferon-gamma (IFN-γ enzyme-linked immunospot (ELISPOT) assays using human peripheral blood mononuclear cells, or expensive human leukocyte antigen (HLA)-expressing mice. In this report, we evaluated the use of our developed murine-20S immunoproteasome (i20S) digestion assay and found that it could predict the results of IFN-γ ELISPOT assays. There is a typographical error in the Abbreviations. “IFN-μΛ, interferon-gamma” should appear as “IFN-γ, interferon-gamma.”

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Development of a novel immunoproteasome digestion assay for synthetic long peptide vaccine design

          Recently, many autologous tumor antigens have been examined for their potential use in cancer immunotherapy. However, the success of cancer vaccines in clinical trials has been limited, partly because of the limitations of using single, short peptides in most attempts. With this in mind, we aimed to develop multivalent synthetic long peptide (SLP) vaccines containing multiple cytotoxic T-lymphocyte (CTL) epitopes. However, to confirm whether a multivalent vaccine can induce an individual epitope-specific CTL, the only viable screening strategies currently available are interferon-gamma (IFN-μ enzyme-linked immunospot (ELISPOT) assays using human peripheral blood mononuclear cells, or expensive human leukocyte antigen (HLA)-expressing mice. In this report, we evaluated the use of our developed murine-20S immunoproteasome (i20S) digestion assay, and found that it could predict the results of IFN-μ ELISPOT assays. Importantly, the murine-i20S digestion assay not only predicted CTL induction, but also antitumor activity in an HLA-expressing mouse model. We conclude that the murine-i20S digestion assay is an extremely useful tool for the development of “all functional” multivalent SLP vaccines.
            Bookmark

            Author and article information

            Journal
            PLoS One
            PLoS ONE
            plos
            plosone
            PLoS ONE
            Public Library of Science (San Francisco, CA USA )
            1932-6203
            4 October 2018
            2018
            4 October 2018
            : 13
            : 10
            : e0205567
            Article
            PONE-D-18-28358
            10.1371/journal.pone.0205567
            6171946
            30286206
            b289570d-8366-414a-ad5e-28d588fd58dd
            © 2018 Wada et al

            This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

            History
            Page count
            Figures: 0, Tables: 0, Pages: 1
            Categories
            Correction

            Uncategorized
            Uncategorized

            Comments

            Comment on this article