28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Mitochondrial Genome of the Entomoparasitic Green Alga Helicosporidium

      research-article
      * ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Helicosporidia are achlorophyllous, non-photosynthetic protists that are obligate parasites of invertebrates. Highly specialized, these pathogens feature an unusual cyst stage that dehisces inside the infected organism and releases a filamentous cell displaying surface projections, which will penetrate the host gut wall and eventually reproduce in the hemolymph. Long classified as incertae sedis or as relatives of other parasites such as Apicomplexa or Microsporidia, the Helicosporidia were surprisingly identified through molecular phylogeny as belonging to the Chlorophyta, a phylum of green algae. Most phylogenetic analyses involving Helicosporidia have placed them within the subgroup Trebouxiophyceae and further suggested a close affiliation between the Helicosporidia and the genus Prototheca. Prototheca species are also achlorophyllous and pathogenic, but they infect vertebrate hosts, inducing protothecosis in humans. The complete plastid genome of an Helicosporidium species was recently described and is a model of compaction and reduction. Here we describe the complete mitochondrial genome sequence of the same strain, Helicosporidium sp. ATCC 50920 isolated from the black fly Simulium jonesi.

          Methodology/Principal Findings

          The circular mapping 49343 bp mitochondrial genome of Helicosporidium closely resembles that of the vertebrate parasite Prototheca wickerhamii. The two genomes share an almost identical gene complement and display a level of synteny that is higher than any other sequenced chlorophyte mitochondrial DNAs. Interestingly, the Helicosporidium mtDNA feature a trans-spliced group I intron, and a second group I intron that contains two open reading frames that appear to be degenerate maturase/endonuclease genes, both rare characteristics for this type of intron.

          Conclusions/Significance

          The architecture, genome content, and phylogeny of the Helicosporidium mitochondrial genome are all congruent with its close relationship to Prototheca within the Trebouxiophyceae. The Helicosporidium mitochondrial genome does, however, contain a number of novel features, particularly relating to its introns.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          ProtTest: selection of best-fit models of protein evolution.

          Using an appropriate model of amino acid replacement is very important for the study of protein evolution and phylogenetic inference. We have built a tool for the selection of the best-fit model of evolution, among a set of candidate models, for a given protein sequence alignment. ProtTest is available under the GNU license from http://darwin.uvigo.es
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            PipMaker--a web server for aligning two genomic DNA sequences.

            PipMaker (http://bio.cse.psu.edu) is a World-Wide Web site for comparing two long DNA sequences to identify conserved segments and for producing informative, high-resolution displays of the resulting alignments. One display is a percent identity plot (pip), which shows both the position in one sequence and the degree of similarity for each aligning segment between the two sequences in a compact and easily understandable form. Positions along the horizontal axis can be labeled with features such as exons of genes and repetitive elements, and colors can be used to clarify and enhance the display. The web site also provides a plot of the locations of those segments in both species (similar to a dot plot). PipMaker is appropriate for comparing genomic sequences from any two related species, although the types of information that can be inferred (e.g., protein-coding regions and cis-regulatory elements) depend on the level of conservation and the time and divergence rate since the separation of the species. Gene regulatory elements are often detectable as similar, noncoding sequences in species that diverged as much as 100-300 million years ago, such as humans and mice, Caenorhabditis elegans and C. briggsae, or Escherichia coli and Salmonella spp. PipMaker supports analysis of unfinished or "working draft" sequences by permitting one of the two sequences to be in unoriented and unordered contigs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mobile group II introns.

              Mobile group II introns, found in bacterial and organellar genomes, are both catalytic RNAs and retrotransposable elements. They use an extraordinary mobility mechanism in which the excised intron RNA reverse splices directly into a DNA target site and is then reverse transcribed by the intron-encoded protein. After DNA insertion, the introns remove themselves by protein-assisted, autocatalytic RNA splicing, thereby minimizing host damage. Here we discuss the experimental basis for our current understanding of group II intron mobility mechanisms, beginning with genetic observations in yeast mitochondria, and culminating with a detailed understanding of molecular mechanisms shared by organellar and bacterial group II introns. We also discuss recently discovered links between group II intron mobility and DNA replication, new insights into group II intron evolution arising from bacterial genome sequencing, and the evolutionary relationship between group II introns and both eukaryotic spliceosomal introns and non-LTR-retrotransposons. Finally, we describe the development of mobile group II introns into gene-targeting vectors, "targetrons," which have programmable target specificity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                29 January 2010
                : 5
                : 1
                : e8954
                Affiliations
                [1]Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
                University of California, Riverside, United States of America
                Author notes

                Conceived and designed the experiments: PJK. Performed the experiments: JFP. Analyzed the data: JFP. Wrote the paper: JFP. Contributed insight into data interpretation: PJK. Helped draft the manuscript: PJK.

                Article
                09-PONE-RA-14358R1
                10.1371/journal.pone.0008954
                2813288
                20126458
                b27ab6ef-3c23-474f-88ab-51697e62c39a
                Pombert, Keeling. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 November 2009
                : 12 January 2010
                Page count
                Pages: 8
                Categories
                Research Article
                Evolutionary Biology/Genomics
                Genetics and Genomics/Genomics
                Molecular Biology/Molecular Evolution

                Uncategorized
                Uncategorized

                Comments

                Comment on this article