12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neurotoxic non-protein amino acids in commercially harvested Lobsters ( Homarus americanus H. Milne-Edwards)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cyanobacteria produce neurotoxic non-protein amino acids (NPAAs) that accumulate in ecosystems and food webs. American lobsters ( Homarus americanus H. Milne-Edwards) are one of the most valuable seafood industries in Canada with exports valued at > $2 billion. Two previous studies have assessed the occurrence of β-N-methylamino-L-alanine (BMAA) in a small number of lobster tissues but a complete study has not previously been undertaken. We measured NPAAs in eyeballs, brain, legs, claws, tails, and eggs of 4 lobsters per year for the 2021 and 2022 harvests. Our study included 4 male and 4 female lobsters. We detected BMAA and its isomers, N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB) and β-aminomethyl-L-alanine (BAMA) by a fully validated reverse phase chromatography—tandem mass spectrometry method. We quantified BMAA, DAB, AEG and BAMA in all of the lobster tissues. Our quantification data varied by individual lobster, sex and collection year. Significantly more BMAA was quantified in lobsters harvested in 2021 than 2022. Interestingly, more BAMA was quantified in lobsters harvested in 2022 than 2021. Monitoring of lobster harvests for cyanobacterial neurotoxins when harmful algal bloom events occur could mitigate risks to human health.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid.

          Cyanobacteria can generate molecules hazardous to human health, but production of the known cyanotoxins is taxonomically sporadic. For example, members of a few genera produce hepatotoxic microcystins, whereas production of hepatotoxic nodularins appears to be limited to a single genus. Production of known neurotoxins has also been considered phylogenetically unpredictable. We report here that a single neurotoxin, beta-N-methylamino-L-alanine, may be produced by all known groups of cyanobacteria, including cyanobacterial symbionts and free-living cyanobacteria. The ubiquity of cyanobacteria in terrestrial, as well as freshwater, brackish, and marine environments, suggests a potential for wide-spread human exposure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cyanobacterial neurotoxin BMAA in ALS and Alzheimer's disease.

            The aim of this study was to screen for and quantify the neurotoxic amino acid beta-N-methylamino-L-alanine (BMAA) in a cohort of autopsy specimens taken from Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and non-neurological controls. BMAA is produced by cyanobacteria found in a variety of freshwater, marine, and terrestrial habitats. The possibility of geographically broad human exposure to BMAA had been suggested by the discovery of BMAA in brain tissues of Chamorro patients with ALS/Parkinsonism dementia complex from Guam and more recently in AD patients from North America. These observations warranted an independent study of possible BMAA exposures outside of the Guam ecosystem. Postmortem brain specimens were taken from neuropathologically confirmed cases of 13 ALS, 12 AD, 8 HD patients, and 12 age-matched non-neurological controls. BMAA was quantified using a validated fluorescent HPLC method previously used to detect BMAA in patients from Guam. Tandem mass spectrometric (MS) analysis was carried out to confirm the identification of BMAA in neurological specimens. We detected and quantified BMAA in neuroproteins from postmortem brain tissue of patients from the United States who died with sporadic AD and ALS but not HD. Incidental detections observed in two out of the 24 regions were analyzed from the controls. The concentrations of BMAA were below what had been reported previously in Chamarro ALS/ Parkinsonism dementia complex patients, but demonstrated a twofold range across disease and regional brain area comparisons. The presence of BMAA in these patients was confirmed by triple quadrupole liquid chromatography/mass spectrometry/mass spectrometry. The occurrence of BMAA in North American ALS and AD patients suggests the possibility of a gene/environment interaction, with BMAA triggering neurodegeneration in vulnerable individuals. (c) 2009 The Authors Journal compilation (c) 2009 Blackwell Munksgaard.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam.

              As root symbionts of cycad trees, cyanobacteria of the genus Nostoc produce beta-methylamino-l-alanine (BMAA), a neurotoxic nonprotein amino acid. The biomagnification of BMAA through the Guam ecosystem fits a classic triangle of increasing concentrations of toxic compounds up the food chain. However, because BMAA is polar and nonlipophilic, a mechanism for its biomagnification through increasing trophic levels has been unclear. We report that BMAA occurs not only as a free amino acid in the Guam ecosystem but also can be released from a bound form by acid hydrolysis. After first removing free amino acids from tissue samples of various trophic levels (cyanobacteria, root symbioses, cycad seeds, cycad flour, flying foxes eaten by the Chamorro people, and brain tissues of Chamorros who died from amyotrophic lateral sclerosis/Parkinsonism dementia complex), we then hydrolyzed the remaining fraction and found BMAA concentrations increased 10- to 240-fold. This bound form of BMAA may function as an endogenous neurotoxic reservoir, accumulating and being transported between trophic levels and subsequently being released during digestion and protein metabolism. Within brain tissues, the endogenous neurotoxic reservoir can slowly release free BMAA, thereby causing incipient and recurrent neurological damage over years or even decades, which may explain the observed long latency period for neurological disease onset among the Chamorro people. The presence of BMAA in brain tissues from Canadian patients who died of Alzheimer's disease suggests that exposure to cyanobacterial neurotoxins occurs outside of Guam.
                Bookmark

                Author and article information

                Contributors
                susan.murch@ubc.ca
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                5 April 2024
                5 April 2024
                2024
                : 14
                : 8017
                Affiliations
                Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, ( https://ror.org/03rmrcq20) Kelowna, BC V1V 1V7 Canada
                Author information
                http://orcid.org/0009-0008-6422-2020
                http://orcid.org/0009-0001-4109-7342
                http://orcid.org/0000-0001-5803-9483
                Article
                58778
                10.1038/s41598-024-58778-1
                10997655
                38580836
                b272f002-f052-4508-bc08-30f4a0ae9aa8
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 10 January 2024
                : 3 April 2024
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                lobster,β-methylamino-alanine,non-protein amino acid,neurotoxin,new brunswick,natural hazards,risk factors,chemistry

                Comments

                Comment on this article