0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Patient-driven discovery of CCN1 to rescue cutaneous wound healing in diabetes via the intracellular EIF3A/CCN1/ATG7 signaling by nanoparticle-enabled delivery

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Wound repair and regeneration: mechanisms, signaling, and translation.

          The cellular and molecular mechanisms underpinning tissue repair and its failure to heal are still poorly understood, and current therapies are limited. Poor wound healing after trauma, surgery, acute illness, or chronic disease conditions affects millions of people worldwide each year and is the consequence of poorly regulated elements of the healthy tissue repair response, including inflammation, angiogenesis, matrix deposition, and cell recruitment. Failure of one or several of these cellular processes is generally linked to an underlying clinical condition, such as vascular disease, diabetes, or aging, which are all frequently associated with healing pathologies. The search for clinical strategies that might improve the body's natural repair mechanisms will need to be based on a thorough understanding of the basic biology of repair and regeneration. In this review, we highlight emerging concepts in tissue regeneration and repair, and provide some perspectives on how to translate current knowledge into viable clinical approaches for treating patients with wound-healing pathologies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Growth factors and cytokines in wound healing.

            Wound healing is an evolutionarily conserved, complex, multicellular process that, in skin, aims at barrier restoration. This process involves the coordinated efforts of several cell types including keratinocytes, fibroblasts, endothelial cells, macrophages, and platelets. The migration, infiltration, proliferation, and differentiation of these cells will culminate in an inflammatory response, the formation of new tissue and ultimately wound closure. This complex process is executed and regulated by an equally complex signaling network involving numerous growth factors, cytokines and chemokines. Of particular importance is the epidermal growth factor (EGF) family, transforming growth factor beta (TGF-beta) family, fibroblast growth factor (FGF) family, vascular endothelial growth factor (VEGF), granulocyte macrophage colony stimulating factor (GM-CSF), platelet-derived growth factor (PDGF), connective tissue growth factor (CTGF), interleukin (IL) family, and tumor necrosis factor-alpha family. Currently, patients are treated by three growth factors: PDGF-BB, bFGF, and GM-CSF. Only PDGF-BB has successfully completed randomized clinical trials in the Unites States. With gene therapy now in clinical trial and the discovery of biodegradable polymers, fibrin mesh, and human collagen serving as potential delivery systems other growth factors may soon be available to patients. This review will focus on the specific roles of these growth factors and cytokines during the wound healing process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The global burden of diabetic foot disease.

              Diabetic foot problems are common throughout the world, resulting in major economic consequences for the patients, their families, and society. Foot ulcers are more likely to be of neuropathic origin, and therefore eminently preventable, in developing countries, which will experience the greatest rise in the prevalence of type 2 diabetes in the next 20 years. People at greatest risk of ulceration can easily be identified by careful clinical examination of the feet: education and frequent follow-up is indicated for these patients. When assessing the economic effects of diabetic foot disease, it is important to remember that rates of recurrence of foot ulcers are very high, being greater than 50% after 3 years. Costing should therefore include not only the immediate ulcer episode, but also social services, home care, and subsequent ulcer episodes. A broader view of total resource use should include some estimate of quality of life and the final outcome. An integrated care approach with regular screening and education of patients at risk requires low expenditure and has the potential to reduce the cost of health care.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomaterials
                Biomaterials
                Elsevier BV
                01429612
                September 2022
                September 2022
                : 288
                : 121698
                Article
                10.1016/j.biomaterials.2022.121698
                36038422
                b260cf14-3cc7-460c-9e06-feb86ce3dbd5
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article