1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigating neonatal health risk variables through cell-type specific methylome-wide association studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adverse neonatal outcomes are a prevailing risk factor for both short- and long-term mortality and morbidity in infants. Given the importance of these outcomes, refining their assessment is paramount for improving prevention and care. Here we aim to enhance the assessment of these often correlated and multifaceted neonatal outcomes. To achieve this, we employ factor analysis to identify common and unique effects and further confirm these effects using criterion-related validity testing. This validation leverages methylome-wide profiles from neonatal blood. Specifically, we investigate nine neonatal health risk variables, including gestational age, Apgar score, three indicators of body size, jaundice, birth diagnosis, maternal preeclampsia, and maternal age. The methylomic profiles used for this research capture data from nearly all 28 million methylation sites in human blood, derived from the blood spot collected from 333 neonates, within 72 h post-birth. Our factor analysis revealed two common factors, size factor, that captured the shared effects of weight, head size, height, and gestational age and disease factor capturing the orthogonal shared effects of gestational age, combined with jaundice and birth diagnosis. To minimize false positives in the validation studies, validation was limited to variables with significant cumulative association as estimated through an in-sample replication procedure. This screening resulted in that the two common factors and the unique effects for gestational age, jaundice and Apgar were further investigated with full-scale cell-type specific methylome-wide association analyses. Highly significant, cell-type specific, associations were detected for both common effect factors and for Apgar. Gene Ontology analyses revealed multiple significant biologically relevant terms for the five fully investigated neonatal health risk variables. Given the established links between adverse neonatal outcomes and both immediate and long-term health, the distinct factor effects (representing the common and unique effects of the risk variables) and their biological profiles confirmed in our work, suggest their potential role as clinical biomarkers for assessing health risks and enhancing personalized care.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13148-024-01681-3.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            mice: Multivariate Imputation by Chained Equations inR

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Gene Ontology resource: enriching a GOld mine

              Abstract The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding the functions of genes and gene products. Here, we report the advances of the consortium over the past two years. The new GO-CAM annotation framework was notably improved, and we formalized the model with a computational schema to check and validate the rapidly increasing repository of 2838 GO-CAMs. In addition, we describe the impacts of several collaborations to refine GO and report a 10% increase in the number of GO annotations, a 25% increase in annotated gene products, and over 9,400 new scientific articles annotated. As the project matures, we continue our efforts to review older annotations in light of newer findings, and, to maintain consistency with other ontologies. As a result, 20 000 annotations derived from experimental data were reviewed, corresponding to 2.5% of experimental GO annotations. The website (http://geneontology.org) was redesigned for quick access to documentation, downloads and tools. To maintain an accurate resource and support traceability and reproducibility, we have made available a historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations.
                Bookmark

                Author and article information

                Contributors
                kaaberg@vcu.edu
                Journal
                Clin Epigenetics
                Clin Epigenetics
                Clinical Epigenetics
                BioMed Central (London )
                1868-7075
                1868-7083
                22 May 2024
                22 May 2024
                2024
                : 16
                : 69
                Affiliations
                [1 ]Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, ( https://ror.org/02nkdxk79) 1112 East Clay Street, P. O. Box 980533, Richmond, VA 23298-0581 USA
                [2 ]Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, ( https://ror.org/056d84691) Stockholm, Sweden
                Article
                1681
                10.1186/s13148-024-01681-3
                11112760
                38778395
                b24b9444-09fb-4e6d-8fc8-428ffec6c732
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 6 November 2023
                : 15 May 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: R01MH109525
                Award Recipient :
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Genetics
                neonatal,biomarker,methylation,gestational age,apgar,jaundice,pre-term
                Genetics
                neonatal, biomarker, methylation, gestational age, apgar, jaundice, pre-term

                Comments

                Comment on this article