With the deepening of the global economic community, various emergencies emerge in endlessly, and the risks gradually increase. People’s lives and property are threatened, which also causes a great burden on the social economy. Hitherto unknown novel coronavirus events occurred in China after the outbreak of the new coronavirus in 2019. The emergency management system is not perfect, so we start to study and improve the deficiencies of the emergency management system, but it is still difficult to effectively prevent and deal with all kinds of sudden and frequent social problems. Therefore, this paper puts forward the research of intelligent evaluation system of government emergency management based on BP neural network. In this paper, an intelligent evaluation system of government emergency management based on Internet of things environment is established, and then the system is deepened by BP neural network algorithm to avoid the interference of human factors. An objective intelligent evaluation system of government emergency management is constructed and verified by an example. We applied the system in a province, and proved that the system has strong executive ability, outstanding big data computing ability, and can objectively evaluate and analyze the government emergency management. The operability and accuracy of the intelligent evaluation system are verified. The effective evaluation content provides a new idea and method for government emergency management. And then continuously improve the emergency management measures to achieve the effect of dealing with things smoothly without panic.