19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Chitosan-based nanoparticles against bacterial infections

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The antimicrobial activity of nanoparticles: present situation and prospects for the future

          Nanoparticles (NPs) are increasingly used to target bacteria as an alternative to antibiotics. Nanotechnology may be particularly advantageous in treating bacterial infections. Examples include the utilization of NPs in antibacterial coatings for implantable devices and medicinal materials to prevent infection and promote wound healing, in antibiotic delivery systems to treat disease, in bacterial detection systems to generate microbial diagnostics, and in antibacterial vaccines to control bacterial infections. The antibacterial mechanisms of NPs are poorly understood, but the currently accepted mechanisms include oxidative stress induction, metal ion release, and non-oxidative mechanisms. The multiple simultaneous mechanisms of action against microbes would require multiple simultaneous gene mutations in the same bacterial cell for antibacterial resistance to develop; therefore, it is difficult for bacterial cells to become resistant to NPs. In this review, we discuss the antibacterial mechanisms of NPs against bacteria and the factors that are involved. The limitations of current research are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antimicrobial peptides of multicellular organisms.

            Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antimicrobial properties of chitosan and mode of action: a state of the art review.

              Owing to its high biodegradability, and nontoxicity and antimicrobial properties, chitosan is widely-used as an antimicrobial agent either alone or blended with other natural polymers. To broaden chitosan's antimicrobial applicability, comprehensive knowledge of its activity is necessary. The paper reviews the current trend of investigation on antimicrobial activities of chitosan and its mode of action. Chitosan-mediated inhibition is affected by several factors can be classified into four types as intrinsic, environmental, microorganism and physical state, according to their respective roles. In this review, different physical states are comparatively discussed. Mode of antimicrobial action is discussed in parts of the active compound (chitosan) and the target (microorganisms) collectively and independently in same complex. Finally, the general antimicrobial applications of chitosan and perspectives about future studies in this field are considered. Copyright © 2010 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Carbohydrate Polymers
                Carbohydrate Polymers
                Elsevier BV
                01448617
                January 2021
                January 2021
                : 251
                : 117108
                Article
                10.1016/j.carbpol.2020.117108
                33142645
                b2463580-f60d-408b-9a02-eb7a45459eaa
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article