11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Phylogenomic Diversity of Herbivore-Associated Fibrobacter spp. Is Correlated to Lignocellulose-Degrading Potential

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The herbivore gut microbiome is incredibly diverse, and a functional understanding of this diversity is needed to more reliably manipulate this community for specific gain, such as increased production in ruminant livestock. Microbial degraders of plant cell wall polysaccharides in the herbivore gut, particularly Fibrobacter spp., are of fundamental importance to their hosts for digestion of a diet consisting primarily of recalcitrant plant fibers. Considerable phylogenetic diversity exists among members of the genus Fibrobacter, but much of this diversity remains cryptic. Here, we used comparative genomics, applied to a diverse collection of recently isolated Fibrobacter strains, to identify a robust association between carbohydrate-active enzyme gene content and the Fibrobacter phylogeny. Our results provide the strongest evidence reported to date for functional differences among Fibrobacter phylotypes associated with either the rumen or the hindgut and emphasize the general significance of carbohydrate-active enzymes in the evolution of fiber-degrading bacteria.

          ABSTRACT

          Members of the genus Fibrobacter are cellulose-degrading bacteria and common constituents of the gastrointestinal microbiota of herbivores. Although considerable phylogenetic diversity is observed among members of this group, few functional differences explaining the distinct ecological distributions of specific phylotypes have been described. In this study, we sequenced and performed a comparative analysis of whole genomes from 38 novel Fibrobacter strains against the type strains for the two formally described Fibrobacter species F. succinogenes strain S85 and F. intestinalis strain NR9. Significant differences in the number of genes encoding carbohydrate-active enzyme families involved in plant cell wall polysaccharide degradation were observed among Fibrobacter phylotypes. F. succinogenes genomes were consistently enriched in genes encoding carbohydrate-active enzymes compared to those of F. intestinalis strains. Moreover, genomes of F. succinogenes phylotypes that are dominant in the rumen had significantly more genes annotated to major families involved in hemicellulose degradation (e.g., CE6, GH10, and GH43) than did the genomes of F. succinogenes phylotypes typically observed in the lower gut of large hindgut-fermenting herbivores such as horses. Genes encoding a putative urease were also identified in 12 of the Fibrobacter genomes, which were primarily isolated from hindgut-fermenting hosts. Screening for growth on urea as the sole source of nitrogen provided strong evidence that the urease was active in these strains. These results represent the strongest evidence reported to date for specific functional differences contributing to the ecology of Fibrobacter spp. in the herbivore gut.

          IMPORTANCE The herbivore gut microbiome is incredibly diverse, and a functional understanding of this diversity is needed to more reliably manipulate this community for specific gain, such as increased production in ruminant livestock. Microbial degraders of plant cell wall polysaccharides in the herbivore gut, particularly Fibrobacter spp., are of fundamental importance to their hosts for digestion of a diet consisting primarily of recalcitrant plant fibers. Considerable phylogenetic diversity exists among members of the genus Fibrobacter, but much of this diversity remains cryptic. Here, we used comparative genomics, applied to a diverse collection of recently isolated Fibrobacter strains, to identify a robust association between carbohydrate-active enzyme gene content and the Fibrobacter phylogeny. Our results provide the strongest evidence reported to date for functional differences among Fibrobacter phylotypes associated with either the rumen or the hindgut and emphasize the general significance of carbohydrate-active enzymes in the evolution of fiber-degrading bacteria.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes

            Background Since its inception, the carbohydrate-active enzymes database (CAZy; http://www.cazy.org) has described the families of enzymes that cleave or build complex carbohydrates, namely the glycoside hydrolases (GH), the polysaccharide lyases (PL), the carbohydrate esterases (CE), the glycosyltransferases (GT) and their appended non-catalytic carbohydrate-binding modules (CBM). The recent discovery that members of families CBM33 and family GH61 are in fact lytic polysaccharide monooxygenases (LPMO), demands a reclassification of these families into a suitable category. Results Because lignin is invariably found together with polysaccharides in the plant cell wall and because lignin fragments are likely to act in concert with (LPMO), we have decided to join the families of lignin degradation enzymes to the LPMO families and launch a new CAZy class that we name “Auxiliary Activities” in order to accommodate a range of enzyme mechanisms and substrates related to lignocellulose conversion. Comparative analyses of these auxiliary activities in 41 fungal genomes reveal a pertinent division of several fungal groups and subgroups combining their phylogenetic origin and their nutritional mode (white vs. brown rot). Conclusions The new class introduced in the CAZy database extends the traditional CAZy families, and provides a better coverage of the full extent of the lignocellulose breakdown machinery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes

              Genomic and metagenomic analyses are increasingly becoming commonplace in several areas of biological research, but recurrent specialized analyses are frequently reported as in-house scripts rarely available after publication. We describe the enveomics collection, a growing set of actively maintained scripts for several recurrent and specialized tasks in microbial genomics and metagenomics, and present a graphical user interface and several case studies. Our resource includes previously described as well as new algorithms such as Transformed-space Resampling In Biased Sets (TRIBS), a novel method to evaluate phylogenetic under- or over-dispersion in reference sets with strong phylogenetic bias. The enveomics collection is freely available under the terms of the Artistic License 2.0 at https://github.com/lmrodriguezr/enveomics and for online analysis at http://enve-omics.ce.gatech.edu
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mSphere
                mSphere
                msph
                msph
                mSphere
                mSphere
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2379-5042
                12 December 2018
                Nov-Dec 2018
                : 3
                : 6
                : e00593-18
                Affiliations
                [a ]Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
                University of California, Davis
                Author notes
                Address correspondence to Garret Suen, gsuen@ 123456wisc.edu .

                Citation Neumann AP, Suen G. 2018. The phylogenomic diversity of herbivore-associated Fibrobacter spp. is correlated to lignocellulose-degrading potential. mSphere 3:e00593-18. https://doi.org/10.1128/mSphere.00593-18.

                Author information
                https://orcid.org/0000-0001-8408-6574
                https://orcid.org/0000-0002-6170-711X
                Article
                mSphere00593-18
                10.1128/mSphere.00593-18
                6291624
                30541780
                b22b7937-85b7-4fa4-b26f-fb94358602b0
                Copyright © 2018 Neumann and Suen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 8 November 2018
                : 29 November 2018
                Page count
                supplementary-material: 6, Figures: 5, Tables: 1, Equations: 0, References: 74, Pages: 18, Words: 10937
                Funding
                Funded by: DOE Office of Biological and Environmental Research;
                Award ID: DE-SC0008104
                Award Recipient :
                Funded by: DOE Office of Science;
                Award ID: DE-AC02-05CH11231
                Award Recipient : Award Recipient :
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: T32AI55397
                Award Recipient :
                Categories
                Research Article
                Ecological and Evolutionary Science
                Custom metadata
                November/December 2018

                fibrobacter,carbohydrate-active enzymes,cellulose,fiber,genomics,gut microbiota,herbivores

                Comments

                Comment on this article