4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sensorineural hearing loss impairs sensitivity but spares temporal integration for detection of frequency modulation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Derivation of auditory filter shapes from notched-noise data.

          A well established method for estimating the shape of the auditory filter is based on the measurement of the threshold of a sinusoidal signal in a notched-noise masker, as a function of notch width. To measure the asymmetry of the filter, the notch has to be placed both symmetrically and asymmetrically about the signal frequency. In previous work several simplifying assumptions and approximations were made in deriving auditory filter shapes from the data. In this paper we describe modifications to the fitting procedure which allow more accurate derivations. These include: 1) taking into account changes in filter bandwidth with centre frequency when allowing for the effects of off-frequency listening; 2) correcting for the non-flat frequency response of the earphone; 3) correcting for the transmission characteristics of the outer and middle ear; 4) limiting the amount by which the centre frequency of the filter can shift in order to maximise the signal-to-masker ratio. In many cases, these modifications result in only small changes to the derived filter shape. However, at very high and very low centre frequencies and for hearing-impaired subjects the differences can be substantial. It is also shown that filter shapes derived from data where the notch is always placed symmetrically about the signal frequency can be seriously in error when the underlying filter is markedly asymmetric. New formulae are suggested describing the variation of the auditory filter with frequency and level. The implication of the results for the calculation of excitation patterns are discussed and a modified procedure is proposed. The appendix list FORTRAN computer programs for deriving auditory filter shapes from notched-noise data and for calculating excitation patterns. The first program can readily be modified so as to derive auditory filter shapes from data obtained with other types of maskers, such as rippled noise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Age-group differences in speech identification despite matched audiometrically normal hearing: contributions from auditory temporal processing and cognition

            Hearing loss with increasing age adversely affects the ability to understand speech, an effect that results partly from reduced audibility. The aims of this study were to establish whether aging reduces speech intelligibility for listeners with normal audiograms, and, if so, to assess the relative contributions of auditory temporal and cognitive processing. Twenty-one older normal-hearing (ONH; 60–79 years) participants with bilateral audiometric thresholds ≤ 20 dB HL at 0.125–6 kHz were matched to nine young (YNH; 18–27 years) participants in terms of mean audiograms, years of education, and performance IQ. Measures included: (1) identification of consonants in quiet and in noise that was unmodulated or modulated at 5 or 80 Hz; (2) identification of sentences in quiet and in co-located or spatially separated two-talker babble; (3) detection of modulation of the temporal envelope (TE) at frequencies 5–180 Hz; (4) monaural and binaural sensitivity to temporal fine structure (TFS); (5) various cognitive tests. Speech identification was worse for ONH than YNH participants in all types of background. This deficit was not reflected in self-ratings of hearing ability. Modulation masking release (the improvement in speech identification obtained by amplitude modulating a noise background) and spatial masking release (the benefit obtained from spatially separating masker and target speech) were not affected by age. Sensitivity to TE and TFS was lower for ONH than YNH participants, and was correlated positively with speech-in-noise (SiN) identification. Many cognitive abilities were lower for ONH than YNH participants, and generally were correlated positively with SiN identification scores. The best predictors of the intelligibility of SiN were composite measures of cognition and TFS sensitivity. These results suggest that declines in speech perception in older persons are partly caused by cognitive and perceptual changes separate from age-related changes in audiometric sensitivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers.

              This paper presents a quantitative model for describing data from modulation-detection and modulation-masking experiments, which extends the model of the "effective" signal processing of the auditory system described in Dau et al. [J. Acoust. Soc. Am. 99, 3615-3622 (1996)]. The new element in the present model is a modulation filterbank, which exhibits two domains with different scaling. In the range 0-10 Hz, the modulation filters have a constant bandwidth of 5 Hz. Between 10 Hz and 1000 Hz a logarithmic scaling with a constant Q value of 2 was assumed. To preclude spectral effects in temporal processing, measurements and corresponding simulations were performed with stochastic narrow-band noise carriers at a high center frequency (5 kHz). For conditions in which the modulation rate (fmod) was smaller than half the bandwidth of the carrier (delta f), the model accounts for the low-pass characteristic in the threshold functions [e.g., Viemeister, J. Acoust. Soc. Am. 66, 1364-1380 (1979)]. In conditions with fmod > delta f/2, the model can account for the high-pass characteristic in the threshold function. In a further experiment, a classical masking paradigm for investigating frequency selectivity was adopted and translated to the modulation-frequency domain. Masked thresholds for sinusoidal test modulation in the presence of a competing modulation masker were measured and simulated as a function of the test modulation rate. In all cases, the model describes the experimental data to within a few dB. It is proposed that the typical low-pass characteristic of the temporal modulation transfer function observed with wide-band noise carriers is not due to "sluggishness" in the auditory system, but can instead be understood in terms of the interaction between modulation filters and the inherent fluctuations in the carrier.
                Bookmark

                Author and article information

                Journal
                The Journal of the Acoustical Society of America
                The Journal of the Acoustical Society of America
                Acoustical Society of America (ASA)
                0001-4966
                August 2018
                August 2018
                : 144
                : 2
                : 720-733
                Affiliations
                [1 ]Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, Ecole Normale Supérieure, Université Paris Sciences & Lettres, Centre National de la Recherche Scientifique, 75005 Paris, France
                [2 ]Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
                Article
                10.1121/1.5049364
                b2259f52-1843-46dc-bfbf-fa8f69b7bc7f
                © 2018
                History

                Comments

                Comment on this article