4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optical tweezers: theory and practice

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The possibility for the manipulation of many different samples using only the light from a laser beam opened the way to a variety of experiments. The technique, known as Optical Tweezers, is nowadays employed in a multitude of applications demonstrating its relevance. Since the pioneering work of Arthur Ashkin, where he used a single strongly focused laser beam, ever more complex experimental set-ups are required in order to perform novel and challenging experiments. Here we provide a comprehensive review of the theoretical background and experimental techniques. We start by giving an overview of the theory of optical forces: first, we consider optical forces in approximated regimes when the particles are much larger (ray optics) or much smaller (dipole approximation) than the light wavelength; then, we discuss the full electromagnetic theory of optical forces with a focus on T-matrix methods. Then, we describe the important aspect of Brownian motion in optical traps and its implementation in optical tweezers simulations. Finally, we provide a general description of typical experimental setups of optical tweezers and calibration techniques with particular emphasis on holographic optical tweezers.

          Related collections

          Most cited references158

          • Record: found
          • Abstract: found
          • Article: not found

          A revolution in optical manipulation.

          Optical tweezers use the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometres to tens of micrometres. Since their introduction in 1986, the optical tweezer has become an important tool for research in the fields of biology, physical chemistry and soft condensed matter physics. Recent advances promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics; they may even become consumer products. The next generation of single-beam optical traps offers revolutionary new opportunities for fundamental and applied research.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Observation of a single-beam gradient force optical trap for dielectric particles

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Brownian dynamics with hydrodynamic interactions

                Bookmark

                Author and article information

                Journal
                The European Physical Journal Plus
                Eur. Phys. J. Plus
                Springer Science and Business Media LLC
                2190-5444
                December 2020
                December 07 2020
                December 2020
                : 135
                : 12
                Article
                10.1140/epjp/s13360-020-00843-5
                b217f3a8-70cf-4c7b-b81c-cececed60f89
                © 2020

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article