4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification, characterization and expression analysis of calmodulin and calmodulin-like proteins in Solanum pennellii

      research-article
      ,
      Scientific Reports
      Nature Publishing Group UK
      Plant physiology, Plant stress responses

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In plants, the calmodulin (CaM) proteins is an important calcium-binding protein, which play a crucial role in both regulating plant growth and development, as well as in the resistance mechanisms to various biotic and abiotic stresses. However, there is limited knowledge available on the CaM family functions in Solanum pennellii, a wild tomato species utilized as a genetic resource for cultivated tomatoes. In this study, 6 CaM ( SpCaM) and 45 CaM-like ( SpCML) genes from Solanum pennellii were selected for bioinformatics analysis to obtain insights into their phylogenetic relationships, gene structures, conserved motifs, chromosomal locations, and promoters. The results showed that the 6 SpCaM proteins contained 4 EF-hand domains each, and the 45 SpCML proteins had 2-4 EF-hand domains. The 51 CaM and CaM-like genes contained different intron/exon patterns and they were unevenly distributed across the 12 chromosomes of S. pennellii. The results of the analysis of the conserved motifs and promoter cis-regulatory elements also indicated that these proteins were involved in the responses to biotic and abiotic stresses. qRT-PCR analysis indicated that the SpCaM and SpCML genes had broad expression patterns in abiotic stress conditions and with hormone treatments, in different tissues. The findings of this study will be important for further investigations of the calcium signal transduction mechanisms under stress conditions and lay a theoretical foundation for further exploration of the molecular mechanisms of plant resistance.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression.

          Abiotic and biotic stresses are major limiting factors of crop yields and cause billions of dollars of losses annually around the world. It is hoped that understanding at the molecular level how plants respond to adverse conditions and adapt to a changing environment will help in developing plants that can better cope with stresses. Acquisition of stress tolerance requires orchestration of a multitude of biochemical and physiological changes, and most of these depend on changes in gene expression. Research during the last two decades has established that different stresses cause signal-specific changes in cellular Ca(2+) level, which functions as a messenger in modulating diverse physiological processes that are important for stress adaptation. In recent years, many Ca(2+) and Ca(2+)/calmodulin (CaM) binding transcription factors (TFs) have been identified in plants. Functional analyses of some of these TFs indicate that they play key roles in stress signaling pathways. Here, we review recent progress in this area with emphasis on the roles of Ca(2+)- and Ca(2+)/CaM-regulated transcription in stress responses. We will discuss emerging paradigms in the field, highlight the areas that need further investigation, and present some promising novel high-throughput tools to address Ca(2+)-regulated transcriptional networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The evolution of spliceosomal introns: patterns, puzzles and progress.

            The origins and importance of spliceosomal introns comprise one of the longest-abiding mysteries of molecular evolution. Considerable debate remains over several aspects of the evolution of spliceosomal introns, including the timing of intron origin and proliferation, the mechanisms by which introns are lost and gained, and the forces that have shaped intron evolution. Recent important progress has been made in each of these areas. Patterns of intron-position correspondence between widely diverged eukaryotic species have provided insights into the origins of the vast differences in intron number between eukaryotic species, and studies of specific cases of intron loss and gain have led to progress in understanding the underlying molecular mechanisms and the forces that control intron evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CDPKs in immune and stress signaling.

              Ca(2+) has long been recognized as a conserved second messenger and principal mediator in plant immune and stress responses. How Ca(2+) signals are sensed and relayed into diverse primary and global signaling events is still largely unknown. Comprehensive analyses of the plant-specific multigene family of Ca(2+)-dependent protein kinases (CDPKs) are unraveling the molecular, cellular and genetic mechanisms of Ca(2+) signaling. CDPKs, which exhibit overlapping and distinct expression patterns, sub-cellular localizations, substrate specificities and Ca(2+) sensitivities, play versatile roles in the activation and repression of enzymes, channels and transcription factors. Here, we review the recent advances on the multifaceted functions of CDPKs in the complex immune and stress signaling networks, including oxidative burst, stomatal movements, hormonal signaling and gene regulation. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                1943597916@qq.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                4 May 2020
                4 May 2020
                2020
                : 10
                : 7474
                Affiliations
                ISNI 0000 0004 0530 8290, GRID grid.22935.3f, College of Plant Protection, , China Agricultural University, ; Beijing, China
                Article
                64178
                10.1038/s41598-020-64178-y
                7198499
                32366918
                b20d09ef-4594-4ccf-9b10-c07f7b4503d3
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 September 2019
                : 26 February 2020
                Funding
                Funded by: Beijing innovation team construction project (25018004)
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                plant physiology,plant stress responses
                Uncategorized
                plant physiology, plant stress responses

                Comments

                Comment on this article