21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The inflammatory microenvironment and microbiome in prostate cancer development

      , , ,
      Nature Reviews Urology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic inflammation promotes the development of several types of solid cancers and might contribute to prostate carcinogenesis. This hypothesis partly originates in the frequent observation of inflammatory cells in the prostate microenvironment of adult men. Inflammation is associated with putative prostate cancer precursor lesions, termed proliferative inflammatory atrophy. Inflammation might drive prostate carcinogenesis via oxidative stress and generation of reactive oxygen species that induce mutagenesis. Additionally, inflammatory stress might cause epigenetic alterations that promote neoplastic transformation. Proliferative inflammatory atrophy is enriched for proliferative luminal epithelial cells of intermediate phenotype that might be prone to genomic alterations leading to prostatic intraepithelial neoplasia and prostate cancer. Studies in animals suggest that inflammatory changes in the prostate microenvironment contribute to reprogramming of prostate epithelial cells, a possible step in tumour initiation. Prostatic infection, concurrent with epithelial barrier disruption, might be a key driver of an inflammatory microenvironment; the discovery of a urinary microbiome indicates a potential source of frequent exposure of the prostate to a diverse number of microorganisms. Hence, current evidence suggests that inflammation and atrophy are involved in prostate carcinogenesis and suggests a role for the microbiome in establishing an inflammatory prostate microenvironment that might promote prostate cancer development and progression.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation in prostate carcinogenesis.

          About 20% of all human cancers are caused by chronic infection or chronic inflammatory states. Recently, a new hypothesis has been proposed for prostate carcinogenesis. It proposes that exposure to environmental factors such as infectious agents and dietary carcinogens, and hormonal imbalances lead to injury of the prostate and to the development of chronic inflammation and regenerative 'risk factor' lesions, referred to as proliferative inflammatory atrophy (PIA). By developing new experimental animal models coupled with classical epidemiological studies, genetic epidemiological studies and molecular pathological approaches, we should be able to determine whether prostate cancer is driven by inflammation, and if so, to develop new strategies to prevent the disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Androgen-induced TOP2B mediated double strand breaks and prostate cancer gene rearrangements

            DNA double strand breaks (DSB) can lead to development of genomic rearrangements, which are hallmarks of cancer. TMPRSS2-ERG gene fusions in prostate cancer (PCa) are among the most common genomic rearrangements observed in human cancer. We show that androgen signaling promotes co-recruitment of androgen receptor (AR) and topoisomerase II beta (TOP2B) to sites of TMPRSS2-ERG genomic breakpoints, triggering recombinogenic TOP2B-mediated DSB. Furthermore, androgen stimulation resulted in de novo production of TMPRSS2-ERG fusion transcripts in a process requiring TOP2B and components of DSB repair machinery. Finally, unlike normal prostate epithelium, prostatic intraepithelial neoplasia (PIN) cells showed strong co-expression of AR and TOP2B. These findings implicate androgen-induced TOP2B-mediated DSB in generating TMPRSS2-ERG rearrangements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer.

              Sipuleucel-T is an investigational active cellular immunotherapy product designed to stimulate an immune response against prostate cancer. The safety and efficacy of sipuleucel-T was evaluated in 2 identically designed, randomized, double-blind, placebo-controlled trials (D9901 and D9902A) conducted in men with advanced prostate cancer. A total of 225 patients were randomized in D9901 or D9902A to sipuleucel-T (n = 147) or placebo (n = 78), given as 3 intravenous infusions approximately 2 weeks apart. Patients were followed for survival until death or a prespecified cutoff of 36 months after randomization. In the integrated analysis of D9901 and D9902A, patients randomized to sipuleucel-T demonstrated a 33% reduction in the risk of death (hazard ratio, 1.50; 95% confidence interval, 1.10-2.05; P = .011; log-rank). The treatment effect remained strong after performing adjustments for imbalances in baseline prognostic factors, poststudy treatment chemotherapy use, and non-prostate cancer-related deaths. Additional support for the activity of sipuleucel-T is provided by the correlation between a measure of the product's potency, CD54 up-regulation, and overall survival. The most common adverse events associated with treatment were chills, pyrexia, headache, asthenia, dyspnea, vomiting, and tremor. These events were primarily grade 1 and 2, with durations of 1 to 2 days. The integrated results of D9901 and D9902A demonstrate a survival benefit for patients treated with sipuleucel-T compared with those treated with placebo. The generally modest toxicity profile, coupled with the survival benefit, suggests a favorable risk-benefit ratio for sipuleucel-T in patients with advanced prostate cancer.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Urology
                Nat Rev Urol
                Springer Nature
                1759-4812
                1759-4820
                October 31 2017
                October 31 2017
                :
                :
                Article
                10.1038/nrurol.2017.167
                29089606
                b1bb3cad-8333-4cf7-b2e5-9da065e6aa6f
                © 2017
                History

                Comments

                Comment on this article