Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Why do BCL-2 inhibitors work and where should we use them in the clinic?

      review-article
      1 , * , 1 , *
      Cell Death and Differentiation
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intrinsic apoptosis is controlled by the BCL-2 family of proteins but the complexity of intra-family interactions makes it challenging to predict cell fate via standard molecular biology techniques. We discuss BCL-2 family regulation and how to determine cells’ readiness for apoptosis and anti-apoptotic dependence. Cancer cells often adopt anti-apoptotic defense mechanisms in response to oncogenic stress or anti-cancer therapy. However, by determining their anti-apoptotic addiction, we can use novel BH3 mimetics to overwhelm this apoptotic blockade. We outline the development and uses of these unique anti-apoptotic inhibitors and how to possibly combine them with other anti-cancer agents using dynamic BH3 profiling (DBP) to improve personalized cancer treatment.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked.

          Bcl-2 is an integral membrane protein located mainly on the outer membrane of mitochondria. Overexpression of Bcl-2 prevents cells from undergoing apoptosis in response to a variety of stimuli. Cytosolic cytochrome c is necessary for the initiation of the apoptotic program, suggesting a possible connection between Bcl-2 and cytochrome c, which is normally located in the mitochondrial intermembrane space. Cells undergoing apoptosis were found to have an elevation of cytochrome c in the cytosol and a corresponding decrease in the mitochondria. Overexpression of Bcl-2 prevented the efflux of cytochrome c from the mitochondria and the initiation of apoptosis. Thus, one possible role of Bcl-2 in prevention of apoptosis is to block cytochrome c release from mitochondria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death.

            Bcl-2 protein is able to repress a number of apoptotic death programs. To investigate the mechanism of Bcl-2's effect, we examined whether Bcl-2 interacted with other proteins. We identified an associated 21 kd protein partner, Bax, that has extensive amino acid homology with Bcl-2, focused within highly conserved domains I and II. Bax is encoded by six exons and demonstrates a complex pattern of alternative RNA splicing that predicts a 21 kd membrane (alpha) and two forms of cytosolic protein (beta and gamma). Bax homodimerizes and forms heterodimers with Bcl-2 in vivo. Overexpressed Bax accelerates apoptotic death induced by cytokine deprivation in an IL-3-dependent cell line. Overexpressed Bax also counters the death repressor activity of Bcl-2. These data suggest a model in which the ratio of Bcl-2 to Bax determines survival or death following an apoptotic stimulus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis.

              A critical function of tumor suppressor p53 is the induction of apoptosis in cells exposed to noxious stresses. We report a previously unidentified pro-apoptotic gene, Noxa. Expression of Noxa induction in primary mouse cells exposed to x-ray irradiation was dependent on p53. Noxa encodes a Bcl-2 homology 3 (BH3)-only member of the Bcl-2 family of proteins; this member contains the BH3 region but not other BH domains. When ectopically expressed, Noxa underwent BH3 motif-dependent localization to mitochondria and interacted with anti-apoptotic Bcl-2 family members, resulting in the activation of caspase-9. We also demonstrate that blocking the endogenous Noxa induction results in the suppression of apoptosis. Noxa may thus represent a mediator of p53-dependent apoptosis.
                Bookmark

                Author and article information

                Journal
                Cell Death Differ
                Cell Death Differ
                Cell Death and Differentiation
                Nature Publishing Group
                1350-9047
                1476-5403
                January 2018
                27 October 2017
                1 January 2018
                : 25
                : 1
                : 56-64
                Affiliations
                [1 ]Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School , Boston, MA 02215, USA
                Author notes
                [* ]Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School , Mayer 426, 450 Brookline Ave, Boston, MA, USA. Tel: +1 617 386 9406. E-mail: joan_montero@ 123456dfci.harvard.edu
                [* ]Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School , Mayer 430, 450 Brookline Ave, Boston, MA, USA. Tel: +1 617 632 2348. Email: Anthony_letai@ 123456dfci.harvard.edu
                [2]

                Current address: Institute for Bioengineering of Catalonia (IBEC), Helix building, A11-A13 lab | C/ Baldiri Reixac 15-21, Barcelona, 08028. Tel. +34 93 403 99 56; E-mail: jmontero@ 123456ibecbarcelona.eu

                Article
                cdd2017183
                10.1038/cdd.2017.183
                5729538
                29077093
                b19eeeb7-ac14-46c7-9118-403481a780df
                Copyright © 2018 The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 04 June 2017
                : 14 August 2017
                : 31 August 2017
                Categories
                Review

                Cell biology
                Cell biology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content427

                Cited by150

                Most referenced authors3,103