21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improving the Transmittance of an Epsilon-Near-Zero based Wavefront Shaper

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although Epsilon-Near-Zero metamaterials (ENZ) offer many unconventional ways to play with light, the optical impedance mismatch with surroundings can limit the efficiency of future devices. We report here on the improvement of the transmittance of an Epsilon-Near-Zero (ENZ) wavefront shaper. We first address in this paper the way to enhance the transmittance of a plane wave through a layer of ENZ material thanks to a numerical optimization approach based on the Transfer Matrix Method. We then transpose the one dimensional approach to a two dimensional case where the emission of a dipole is shaped into a plane wave by an ENZ device with a design that optimizes the transmittance. As a result, we demonstrate a transmittance efficiency of 15 \% that is 4 orders of magnitude higher than previous devices proposed in the literature for wavefront shaping applications. This work aims at paving the way for future efficient ENZ devices by offering new strategies to optimize the transmittance through ENZ materials.

          Related collections

          Author and article information

          Journal
          2016-09-16
          Article
          10.1364/OL.99.099999
          1609.04940
          b18cfd25-5b51-433d-8d9d-40cc983e1804

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          physics.optics

          Optical materials & Optics
          Optical materials & Optics

          Comments

          Comment on this article