29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 Cells by a Multiplex CRISPR/Cas9 Strategy Results in Glycoproteins without Plant-Specific Glycans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plants or plant cells can be used to produce pharmacological glycoproteins such as antibodies or vaccines. However these proteins carry N-glycans with plant-typical residues [β(1,2)-xylose and core α(1,3)-fucose], which can greatly impact the immunogenicity, allergenicity, or activity of the protein. Two enzymes are responsible for the addition of plant-specific glycans: β(1,2)-xylosyltransferase (XylT) and α(1,3)-fucosyltransferase (FucT). Our aim consisted of knocking-out two XylT genes and four FucT genes (12 alleles altogether) in Nicotiana tabacum BY-2 suspension cells using CRISPR/Cas9. Three XylT and six FucT sgRNAs were designed to target conserved regions. After transformation of N. tabacum BY-2 cells with genes coding for sgRNAs, Cas9, and a selectable marker ( bar), transgenic lines were obtained and their extracellular as well as intracellular protein complements were analyzed by Western blotting using antibodies recognizing β(1,2)-xylose and α(1,3)-fucose. Three lines showed a strong reduction of β(1,2)-xylose and α(1,3)-fucose, while two lines were completely devoid of them, indicating complete gene inactivation. The absence of these carbohydrates was confirmed by mass spectrometry analysis of the extracellular proteins. PCR amplification and sequencing of the targeted region indicated small INDEL and/or deletions between the target sites. The KO lines did not show any particular morphology and grew as the wild-type. One KO line was transformed with genes encoding a human IgG2 antibody. The IgG2 expression level was as high as in a control transformant which had not been glycoengineered. The IgG glycosylation profile determined by mass spectrometry confirmed that no β(1,2)-xylose or α(1,3)-fucose were present on the glycosylation moiety and that the dominant glycoform was the GnGn structure. These data represent an important step toward humanizing the glycosylation of pharmacological proteins expressed in N. tabacum BY-2 cells.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: not found
          • Article: not found

          Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant genome engineering with sequence-specific nucleases.

            Recent advances in genome engineering provide newfound control over a plant's genetic material. It is now possible for most bench scientists to alter DNA in living plant cells in a variety of ways, including introducing specific nucleotide substitutions in a gene that change a protein's amino acid sequence, deleting genes or chromosomal segments, and inserting foreign DNA at precise genomic locations. Such targeted DNA sequence modifications are enabled by sequence-specific nucleases that create double-strand breaks in the genomic loci to be altered. The repair of the breaks, through either homologous recombination or nonhomologous end joining, can be controlled to achieve the desired sequence modification. Genome engineering promises to advance basic plant research by linking DNA sequences to biological function. Further, genome engineering will enable plants' biosynthetic capacity to be harnessed to produce the many agricultural products required by an expanding world population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency

              Background Single-guide RNA (sgRNA) is one of the two key components of the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 genome-editing system. The current commonly used sgRNA structure has a shortened duplex compared with the native bacterial CRISPR RNA (crRNA)–transactivating crRNA (tracrRNA) duplex and contains a continuous sequence of thymines, which is the pause signal for RNA polymerase III and thus could potentially reduce transcription efficiency. Results Here, we systematically investigate the effect of these two elements on knockout efficiency and showed that modifying the sgRNA structure by extending the duplex length and mutating the fourth thymine of the continuous sequence of thymines to cytosine or guanine significantly, and sometimes dramatically, improves knockout efficiency in cells. In addition, the optimized sgRNA structure also significantly increases the efficiency of more challenging genome-editing procedures, such as gene deletion, which is important for inducing a loss of function in non-coding genes. Conclusions By a systematic investigation of sgRNA structure we find that extending the duplex by approximately 5 bp combined with mutating the continuous sequence of thymines at position 4 to cytosine or guanine significantly increases gene knockout efficiency in CRISPR-Cas9-based genome editing experiments. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0846-3) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                27 March 2017
                2017
                : 8
                : 403
                Affiliations
                [1] 1Institut des Sciences de la Vie, Université catholique de Louvain Louvain-la-Neuve, Belgium
                [2] 2Mass Spectrometry Laboratory, Molecular Systems Research Unit, Université de Liège Liège, Belgium
                Author notes

                Edited by: Joachim Hermann Schiemann, Julius Kühn-Institut, Germany

                Reviewed by: Richard Strasser, University of Natural Resources and Life Sciences, Vienna, Austria; Marcello Donini, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Italy

                *Correspondence: Marc Boutry, marc.boutry@ 123456uclouvain.be

                This article was submitted to Plant Biotechnology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2017.00403
                5366340
                28396675
                b177546c-fd79-497e-9ae9-bd363fbc1116
                Copyright © 2017 Mercx, Smargiasso, Chaumont, De Pauw, Boutry and Navarre.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 January 2017
                : 09 March 2017
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 35, Pages: 11, Words: 0
                Funding
                Funded by: Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture 10.13039/501100003134
                Funded by: Fonds De La Recherche Scientifique - FNRS 10.13039/501100002661
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                antibody,plant-specific glycans,humanized n-glycosylation,molecular farming,gene editing,glycoproteins,glyco-engineering,suspension cells

                Comments

                Comment on this article