1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pentose degradation in archaea: Halorhabdus species degrade D-xylose, L-arabinose and D-ribose via bacterial-type pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The degradation of the pentoses d-xylose, l-arabinose and d-ribose in the domain of archaea, in Haloferax volcanii and in Haloarcula and Sulfolobus species, has been shown to proceed via oxidative pathways to generate α-ketoglutarate. Here, we report that the haloarchaeal Halorhabdus species utilize the bacterial-type non-oxidative degradation pathways for pentoses generating xylulose-5-phosphate. The genes of these pathways are each clustered and were constitutively expressed. Selected enzymes involved in d-xylose degradation, xylose isomerase and xylulokinase, and those involved in l-arabinose degradation, arabinose isomerase and ribulokinase, were characterized. Further, d-ribose degradation in Halorhabdus species involves ribokinase, ribose-5-phosphate isomerase and d-ribulose-5-phosphate-3-epimerase. Ribokinase of Halorhabdus tiamatea and ribose-5-phosphate isomerase of Halorhabdus utahensis were characterized. This is the first report of pentose degradation via the bacterial-type pathways in archaea, in Halorhabdus species that likely acquired these pathways from bacteria. The utilization of bacterial-type pathways of pentose degradation rather than the archaeal oxidative pathways generating α-ketoglutarate might be explained by an incomplete gluconeogenesis in Halorhabdus species preventing the utilization of α-ketoglutarate in the anabolism.

          Electronic supplementary material

          The online version of this article (10.1007/s00792-020-01192-y) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Clustal W and Clustal X version 2.0.

          The Clustal W and Clustal X multiple sequence alignment programs have been completely rewritten in C++. This will facilitate the further development of the alignment algorithms in the future and has allowed proper porting of the programs to the latest versions of Linux, Macintosh and Windows operating systems. The programs can be run on-line from the EBI web server: http://www.ebi.ac.uk/tools/clustalw2. The source code and executables for Windows, Linux and Macintosh computers are available from the EBI ftp site ftp://ftp.ebi.ac.uk/pub/software/clustalw2/
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation

            The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55 000 organisms (>4800 viruses, >40 000 prokaryotes and >10 000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Deciphering key features in protein structures with the new ENDscript server

              ENDscript 2 is a friendly Web server for extracting and rendering a comprehensive analysis of primary to quaternary protein structure information in an automated way. This major upgrade has been fully re-engineered to enhance speed, accuracy and usability with interactive 3D visualization. It takes advantage of the new version 3 of ESPript, our well-known sequence alignment renderer, improved to handle a large number of data with reduced computation time. From a single PDB entry or file, ENDscript produces high quality figures displaying multiple sequence alignment of proteins homologous to the query, colored according to residue conservation. Furthermore, the experimental secondary structure elements and a detailed set of relevant biophysical and structural data are depicted. All this information and more are now mapped on interactive 3D PyMOL representations. Thanks to its adaptive and rigorous algorithm, beginner to expert users can modify settings to fine-tune ENDscript to their needs. ENDscript has also been upgraded as an open platform for the visualization of multiple biochemical and structural data coming from external biotool Web servers, with both 2D and 3D representations. ENDscript 2 and ESPript 3 are freely available at http://endscript.ibcp.fr and http://espript.ibcp.fr, respectively.
                Bookmark

                Author and article information

                Contributors
                peter.schoenheit@ifam.uni-kiel.de
                Journal
                Extremophiles
                Extremophiles
                Extremophiles
                Springer Japan (Tokyo )
                1431-0651
                1433-4909
                5 August 2020
                5 August 2020
                2020
                : 24
                : 5
                : 759-772
                Affiliations
                GRID grid.9764.c, ISNI 0000 0001 2153 9986, Institut für Allgemeine Mikrobiologie, , Christian-Albrechts-Universität Kiel, ; Am Botanischen Garten 1-9, 24118 Kiel, Germany
                Author notes

                Communicated by H. Atomi.

                Article
                1192
                10.1007/s00792-020-01192-y
                8551123
                32761262
                b174d1a5-17f8-4024-8458-e01b0a9b81dc
                © The Author(s) 2020, Corrected publication 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 May 2020
                : 21 July 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001659, Projekt DEAL;
                Categories
                Original Paper
                Custom metadata
                © Springer Japan KK, part of Springer Nature 2020

                Microbiology & Virology
                halorhabdus utahensis,d-ribose,d-xylose and l-arabinose,archaea,xylose isomerase,ribokinase,lateral gene transfer

                Comments

                Comment on this article