2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sjogren-Larsson Syndrome: Mechanisms and Management

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sjogren Larsson syndrome (SLS) is a rare autosomal recessive inborn error of lipid metabolism due to mutations in the ALDH3A2 that result in a deficiency of fatty aldehyde dehydrogenase (FALDH). The syndrome has a high prevalence in Sweden where it was first described, but now known to occur worldwide. The classical triad of ichthyosis, mental retardation and spasticity characterizes clinical features. Preterm birth is common. “Glistening white dots” in the retina is a pathognomic clinical feature. Magnetic resonance imaging of the brain demonstrates leukoencephalopathy predominant in the periventricular region. Cerebral MR spectroscopy reveals a characteristic abnormal lipid peak at 1.3ppm and a small peak at 0.9ppm. The primary role of FALDH is oxidation of medium and long-chain aliphatic aldehydes derived from fatty alcohol, phytanic acid, ether glycerolipids and sphingolipids. The diagnosis is based on the typical phenotype, demonstration of the enzyme deficiency and presence of biallelic mutations in the ALDH3A2. The management of SLS largely remains symptomatic currently. However, several potential therapeutic options are being developed, keeping in view of the fundamental metabolic defects or correcting the genetic defect. This review aims to summarize the clinical, genetic and biochemical findings, pathogenetic mechanisms and the current therapeutic options, in SLS.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily.

          Aldehydes are highly reactive molecules. While several non-P450 enzyme systems participate in their metabolism, one of the most important is the aldehyde dehydrogenase (ALDH) superfamily, composed of NAD(P)+-dependent enzymes that catalyze aldehyde oxidation. This article presents a review of what is currently known about each member of the human ALDH superfamily including the pathophysiological significance of these enzymes. Relevant literature involving all members of the human ALDH family was extensively reviewed, with the primary focus on recent and novel findings. To date, 19 ALDH genes have been identified in the human genome and mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjögren-Larsson syndrome, type II hyperprolinemia, gamma-hydroxybutyric aciduria and pyridoxine-dependent seizures. ALDH enzymes also play important roles in embryogenesis and development, neurotransmission, oxidative stress and cancer. Finally, ALDH enzymes display multiple catalytic and non-catalytic functions including ester hydrolysis, antioxidant properties, xenobiotic bioactivation and UV light absorption.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Update on the aldehyde dehydrogenase gene (ALDH) superfamily

              Members of the aldehyde dehydrogenase gene (ALDH) superfamily play an important role in the enzymic detoxification of endogenous and exogenous aldehydes and in the formation of molecules that are important in cellular processes, like retinoic acid, betaine and gamma-aminobutyric acid. ALDHs exhibit additional, non-enzymic functions, including the capacity to bind to some hormones and other small molecules and to diminish the effects of ultraviolet irradiation in the cornea. Mutations in ALDH genes leading to defective aldehyde metabolism are the molecular basis of several diseases, including gamma-hydroxybutyric aciduria, pyridoxine-dependent seizures, Sjögren-Larsson syndrome and type II hyperprolinaemia. Interestingly, several ALDH enzymes appear to be markers for normal and cancer stem cells. The superfamily is evolutionarily ancient and is represented within Archaea, Eubacteria and Eukarya taxa. Recent improvements in DNA and protein sequencing have led to the identification of many new ALDH family members. To date, the human genome contains 19 known ALDH genes, as well as many pseudogenes. Whole-genome sequencing allows for comparison of the entire complement of ALDH family members among organisms. This paper provides an update of ALDH genes in several recently sequenced vertebrates and aims to clarify the associated records found in the National Center for Biotechnology Information (NCBI) gene database. It also highlights where and when likely gene-duplication and gene-loss events have occurred. This information should be useful to future studies that might wish to compare the role of ALDH members among species and how the gene superfamily as a whole has changed throughout evolution.
                Bookmark

                Author and article information

                Journal
                Appl Clin Genet
                Appl Clin Genet
                TACG
                tacg
                The Application of Clinical Genetics
                Dove
                1178-704X
                07 January 2020
                2020
                : 13
                : 13-24
                Affiliations
                [1 ]TY Nelson Department of Neurology and Neurosurgery, Children’s Hospital at Westmead , Sydney, NSW, Australia
                Author notes
                Correspondence: Parayil Sankaran Bindu Email Bindu.parayilsankaran@health.nsw.gov.au
                Article
                193969
                10.2147/TACG.S193969
                6954685
                32021380
                b172828b-a273-42a6-b310-c07f00d24144
                © 2020 Bindu.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 04 July 2019
                : 23 November 2019
                Page count
                Figures: 3, References: 83, Pages: 12
                Categories
                Review

                sjogren larsson syndrome,spastic paraplegia,icthyosis,glistening white dots,leukoencephalopathy,faldh,aldh3a2,fatty aldehydes,leukotriene b4

                Comments

                Comment on this article