In this study, for the first time, biobased photopolymers were synthesized from phloroglucinol tris epoxy with and without different comonomers, phloroglucinol, 1,4:3,6-dianhydro- D-sorbitol, and 1,4-cyclohexanedimethanol. The rheological, thermal, mechanical, shape-memory, and antimicrobial properties of photopolymers were investigated. The addition of comonomers reduced the photocuring rate (gel time increased from 325 s to 434–861 s) and rigidity (storage modulus decreased from 330.76 to 15.42–85.77 MPa), reduced their brittleness, and increased the flexibility (elongation at break increased from 0.9 to 1.89–4.51%), although the tensile strength of the polymers remained sufficiently high (tensile strength was reduced from 292.00 to 132.62–234.54 MPa). All polymers exhibited a thermoresponsive shape-memory behavior as they could maintain a temporary shape below their glass-transition temperature and return to the permanent shape when the temperature was raised again above the glass-transition temperature. All polymers showed high antibacterial activity against Staphylococcus aureus (90.3–96.4%) and Escherichia coli (97.8–99.6%) even after 1 h of contact with bacteria. The photoresins were tested in microimprint lithography and confirmed to accurately reproduce the shape features of the 3D printed target. Compositions prepared with 1,4-cyclohexanedimethanol were the most promising due to fast photocuring and the highest flexibility. Synthesized biobased photopolymers have a wide range of properties, making them potential candidates for the production of functional coatings, biomedical devices, or flexible electronics.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.