13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epigenetic modification in diabetic kidney disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetic kidney disease (DKD) is a common microangiopathy in diabetic patients and the main cause of death in diabetic patients. The main manifestations of DKD are proteinuria and decreased renal filtration capacity. The glomerular filtration rate and urinary albumin level are two of the most important hallmarks of the progression of DKD. The classical treatment of DKD is controlling blood glucose and blood pressure. However, the commonly used clinical therapeutic strategies and the existing biomarkers only partially slow the progression of DKD and roughly predict disease progression. Therefore, novel therapeutic methods, targets and biomarkers are urgently needed to meet clinical requirements. In recent years, increasing attention has been given to the role of epigenetic modification in the pathogenesis of DKD. Epigenetic variation mainly includes DNA methylation, histone modification and changes in the noncoding RNA expression profile, which are deeply involved in DKD-related inflammation, oxidative stress, hemodynamics, and the activation of abnormal signaling pathways. Since DKD is reversible at certain disease stages, it is valuable to identify abnormal epigenetic modifications as early diagnosis and treatment targets to prevent the progression of end-stage renal disease (ESRD). Because the current understanding of the epigenetic mechanism of DKD is not comprehensive, the purpose of this review is to summarize the role of epigenetic modification in the occurrence and development of DKD and evaluate the value of epigenetic therapies in DKD.

          Related collections

          Most cited references278

          • Record: found
          • Abstract: found
          • Article: not found

          DNA methylation and its basic function.

          In the mammalian genome, DNA methylation is an epigenetic mechanism involving the transfer of a methyl group onto the C5 position of the cytosine to form 5-methylcytosine. DNA methylation regulates gene expression by recruiting proteins involved in gene repression or by inhibiting the binding of transcription factor(s) to DNA. During development, the pattern of DNA methylation in the genome changes as a result of a dynamic process involving both de novo DNA methylation and demethylation. As a consequence, differentiated cells develop a stable and unique DNA methylation pattern that regulates tissue-specific gene transcription. In this chapter, we will review the process of DNA methylation and demethylation in the nervous system. We will describe the DNA (de)methylation machinery and its association with other epigenetic mechanisms such as histone modifications and noncoding RNAs. Intriguingly, postmitotic neurons still express DNA methyltransferases and components involved in DNA demethylation. Moreover, neuronal activity can modulate their pattern of DNA methylation in response to physiological and environmental stimuli. The precise regulation of DNA methylation is essential for normal cognitive function. Indeed, when DNA methylation is altered as a result of developmental mutations or environmental risk factors, such as drug exposure and neural injury, mental impairment is a common side effect. The investigation into DNA methylation continues to show a rich and complex picture about epigenetic gene regulation in the central nervous system and provides possible therapeutic targets for the treatment of neuropsychiatric disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome editing. The new frontier of genome engineering with CRISPR-Cas9.

            The advent of facile genome engineering using the bacterial RNA-guided CRISPR-Cas9 system in animals and plants is transforming biology. We review the history of CRISPR (clustered regularly interspaced palindromic repeat) biology from its initial discovery through the elucidation of the CRISPR-Cas9 enzyme mechanism, which has set the stage for remarkable developments using this technology to modify, regulate, or mark genomic loci in a wide variety of cells and organisms from all three domains of life. These results highlight a new era in which genomic manipulation is no longer a bottleneck to experiments, paving the way toward fundamental discoveries in biology, with applications in all branches of biotechnology, as well as strategies for human therapeutics. Copyright © 2014, American Association for the Advancement of Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic regulation of gene expression by histone lactylation

              The Warburg effect, originally describing augmented lactogenesis in cancer, is associated with diverse cellular processes such as angiogenesis, hypoxia, macrophage polarization, and T-cell activation. This phenomenon is intimately linked with multiple diseases including neoplasia, sepsis, and autoimmune diseases 1,2 . Lactate, a compound generated during Warburg effect, is widely known as an energy source and metabolic byproduct. However, its non-metabolic functions in physiology and disease remain unknown. Here we report lactate-derived histone lysine lactylation as a new epigenetic modification and demonstrate that histone lactylation directly stimulates gene transcription from chromatin. In total, we identify 28 lactylation sites on core histones in human and mouse cells. Hypoxia and bacterial challenges induce production of lactate through glycolysis that in turn serves as precursor for stimulating histone lactylation. Using bacterially exposed M1 macrophages as a model system, we demonstrate that histone lactylation has different temporal dynamics from acetylation. In the late phase of M1 macrophage polarization, elevated histone lactylation induces homeostatic genes involved in wound healing including arginase 1. Collectively, our results suggest the presence of an endogenous “lactate clock” in bacterially challenged M1 macrophages that turns on gene expression to promote homeostasis. Histone lactylation thus represents a new avenue for understanding the functions of lactate and its role in diverse pathophysiological conditions, including infection and cancer.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                30 June 2023
                2023
                : 14
                : 1133970
                Affiliations
                [1] 1 Public Research Platform, First Hospital of Jilin University , Changchun, Jilin, China
                [2] 2 College of Basic Medical Sciences, Jilin University , Changchun, Jilin, China
                [3] 3 Department of Nephrology, First Hospital of Jilin University , Changchun, Jilin, China
                Author notes

                Edited by: Sen Li, Beijing University of Chinese Medicine, China

                Reviewed by: Yang Danyi, Central South University, China; Swayam Prakash Srivastava, Yale University, United States

                *Correspondence: Dehai Yu, yudehai@ 123456jlu.edu.cn ; Weixia Sun, sunwx@ 123456jlu.edu.cn
                Article
                10.3389/fendo.2023.1133970
                10348754
                37455912
                b1556bdb-62af-490c-bbaa-29230aad7bbe
                Copyright © 2023 Liu, Liu, Wang, An, Luo, Yu and Sun

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 December 2022
                : 30 May 2023
                Page count
                Figures: 3, Tables: 4, Equations: 0, References: 279, Pages: 20, Words: 6356
                Funding
                Funded by: Natural Science Foundation of Jilin Province , doi 10.13039/100007847;
                Funded by: Natural Science Foundation of Jilin Province , doi 10.13039/100007847;
                Funded by: Natural Science Foundation of Jilin Province , doi 10.13039/100007847;
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Funded by: Natural Science Foundation of Jilin Province , doi 10.13039/100007847;
                This work was supported in part by Natural Science Foundation of Jilin Province (20200201428JC to WS and 20210101339JC to WW), Jilin International Collaboration Grant (20220402066GH to DY), the Subject Arrangement Program from Science and Technology Department of Jilin Province (20200201123JC to DY), National Natural Science Foundation of China (82000688 to WW), and Science and technology research project of Jilin Provincial Department of Education (JJKH20211185KJ to WW).
                Categories
                Endocrinology
                Review
                Custom metadata
                Clinical Diabetes

                Endocrinology & Diabetes
                epigenetic modification,diabetic kidney disease,metabolic disorder,biomarker,noncoding rna

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content414

                Cited by4

                Most referenced authors5,926