60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study addresses the mechanisms by which CHOP directs gene regulatory networks and determines cell fate. Transcriptional expression of ATF5 is activated by both CHOP and ATF4 in the integrated stress response. CHOP and ATF5 control a switch to activate apoptotic genes and decrease cell survival in response to loss of proteostatic control.

          Abstract

          Environmental stresses that disrupt protein homeostasis induce phosphorylation of eIF2, triggering repression of global protein synthesis coincident with preferential translation of ATF4, a transcriptional activator of the integrated stress response (ISR). Depending on the extent of protein disruption, ATF4 may not be able to restore proteostatic control and instead switches to a terminal outcome that features elevated expression of the transcription factor CHOP (GADD153/DDIT3). The focus of this study is to define the mechanisms by which CHOP directs gene regulatory networks that determine cell fate. We find that in response to proteasome inhibition, CHOP enhances the expression of a collection of genes encoding transcription regulators, including ATF5, which is preferentially translated during eIF2 phosphorylation. Transcriptional expression of ATF5 is directly induced by both CHOP and ATF4. Knockdown of ATF5 increases cell survival in response to proteasome inhibition, supporting the idea that both ATF5 and CHOP have proapoptotic functions. Transcriptome analysis of ATF5-dependent genes reveals targets involved in apoptosis, including NOXA, which is important for inducing cell death during proteasome inhibition. This study suggests that the ISR features a feedforward loop of stress-induced transcriptional regulators, each subject to transcriptional and translational control, which can switch cell fate toward apoptosis.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum.

          Cellular stress, particularly in response to toxic and metabolic insults that perturb function of the endoplasmic reticulum (ER stress), is a powerful inducer of the transcription factor CHOP. The role of CHOP in the response of cells to injury associated with ER stress was examined in a murine deficiency model obtained by homologous recombination at the chop gene. Compared with the wild type, mouse embryonic fibroblasts (MEFs) derived from chop -/- animals exhibited significantly less programmed cell death when challenged with agents that perturb ER function. A similar deficit in programmed cells death in response to ER stress was also observed in MEFs that lack CHOP's major dimerization partner, C/EBPbeta, implicating the CHOP-C/EBP pathway in programmed cell death. An animal model for studying the effects of chop on the response to ER stress was developed. It entailed exposing mice with defined chop genotypes to a single sublethal intraperitoneal injection of tunicamycin and resulted in a severe illness characterized by transient renal insufficiency. In chop +/+ and chop +/- mice this was associated with the early expression of CHOP in the proximal tubules followed by the development of a histological picture similar to the human condition known as acute tubular necrosis, a process that resolved by cellular regeneration. In the chop -/- animals, in spite of the severe impairment in renal function, evidence of cellular death in the kidney was reduced compared with the wild type. The proximal tubule epithelium of chop -/- animals exhibited fourfold lower levels of TUNEL-positive cells (a marker for programmed cell death), and significantly less evidence for subsequent regeneration. CHOP therefore has a role in the induction of cell death under conditions associated with malfunction of the ER and may also have a role in cellular regeneration under such circumstances.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biological and chemical approaches to diseases of proteostasis deficiency.

            Many diseases appear to be caused by the misregulation of protein maintenance. Such diseases of protein homeostasis, or "proteostasis," include loss-of-function diseases (cystic fibrosis) and gain-of-toxic-function diseases (Alzheimer's, Parkinson's, and Huntington's disease). Proteostasis is maintained by the proteostasis network, which comprises pathways that control protein synthesis, folding, trafficking, aggregation, disaggregation, and degradation. The decreased ability of the proteostasis network to cope with inherited misfolding-prone proteins, aging, and/or metabolic/environmental stress appears to trigger or exacerbate proteostasis diseases. Herein, we review recent evidence supporting the principle that proteostasis is influenced both by an adjustable proteostasis network capacity and protein folding energetics, which together determine the balance between folding efficiency, misfolding, protein degradation, and aggregation. We review how small molecules can enhance proteostasis by binding to and stabilizing specific proteins (pharmacologic chaperones) or by increasing the proteostasis network capacity (proteostasis regulators). We propose that such therapeutic strategies, including combination therapies, represent a new approach for treating a range of diverse human maladies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome.

              Recent clinical and experimental evidence suggests that endoplasmic reticulum (ER) stress contributes to the life-and-death decisions of β cells during the progression of type 1 and type 2 diabetes. Although crosstalk between inflammation and ER stress has been suggested to play a significant role in β cell dysfunction and death, a key molecule connecting ER stress to inflammation has not been identified. Here we report that thioredoxin-interacting protein (TXNIP) is a critical signaling node that links ER stress and inflammation. TXNIP is induced by ER stress through the PERK and IRE1 pathways, induces IL-1β mRNA transcription, activates IL-1β production by the NLRP3 inflammasome, and mediates ER stress-mediated β cell death. Collectively, our results suggest that TXNIP is a potential therapeutic target for diabetes and ER stress-related human diseases such as Wolfram syndrome. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                01 August 2013
                : 24
                : 15
                : 2477-2490
                Affiliations
                [1] aDepartment of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202
                [2] bDepartment of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610
                University of California, Berkeley
                Author notes
                1Address correspondence to: Ronald C. Wek ( rwek@ 123456iu.edu ).
                Article
                E13-01-0067
                10.1091/mbc.E13-01-0067
                3727939
                23761072
                b146ffe7-fb5b-4dee-8f97-8e7d81279d45
                © 2013 Teske et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.

                History
                : 31 January 2013
                : 20 May 2013
                : 03 June 2013
                Categories
                Articles
                Signaling

                Molecular biology
                Molecular biology

                Comments

                Comment on this article