6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of molecular structure of the resins on the volumetric shrinkage and the mechanical strength of dental restorative composites.

      1 , ,
      Biomacromolecules
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To prepare a dental composite that has a low amount of curing shrinkage and excellent mechanical strength, various 2,2-bis[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane (Bis-GMA) derivatives were synthesized via molecular structure design, and afterward, properties of their mixtures were explored. Bis-GMA derivatives, which were obtained by substituting methyl groups for hydrogen on the phenyl ring in the Bis-GMA, exhibited lower curing shrinkage than Bis-GMA, whereas their viscosities were higher than that of Bis-GMA. Other Bis-GMA derivatives, which contained a glycidyl methacrylate as a molecular end group exhibited reduced curing shrinkage and viscosity. Methoxy substitution for hydroxyl groups on the Bis-GMA derivatives was performed for the further reduction of the viscosity and curing shrinkage. Various resin mixtures, which had the same viscosity as the commercial one, were prepared, and their curing shrinkage was examined. A resin mixture containing 2,2-bis[3,5-dimethyl, 4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane] (TMBis-M-GMA) as a base resin and 4-tert-butylphenoxy-2-methyoxypropyl methacrylate (t-BP-M-GMA) as a diluent exhibited the lowest curing shrinkage among them. The composite prepared from this resin mixture also exhibited the lowest curing shrinkage along with enhanced mechanical properties.

          Related collections

          Author and article information

          Journal
          Biomacromolecules
          Biomacromolecules
          American Chemical Society (ACS)
          1525-7797
          1525-7797
          Sep 2006
          : 7
          : 9
          Affiliations
          [1 ] School of Chemical Engineering and Materials Science, Chung-Ang University, 221 Huksuk-dong. Dongjak-gu, Seoul 156-756, Korea.
          Article
          10.1021/bm060453h
          16961332
          b1163442-a3c9-4bfc-8052-4a87166270a7
          History

          Comments

          Comment on this article