2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of antibacterial peptide-producing Bacillus subtilis, gallic acid, and cellulase on fermentation quality and bacterial community of whole-plant corn silage

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the current study, we assessed the effects of antibacterial peptide-producing Bacillus subtilis (BS), gallic acid (GA) and cellulase (CL) on the fermentation quality and bacterial community of various varieties of whole-plant corn silage. Three different varieties of whole-plant corn (Yuqing386, Enxiai298, and Nonghe35) were treated with 0.02% BS (fresh material basis), 0.2% GA (fresh material basis) and 0.02% CL (fresh material basis), after which 45 days of anaerobic fermentation were conducted. With the exception of its low dry matter content, the results showed that Yuqing386’s crude protein, water-soluble carbohydrate, and lactic acid contents were significantly higher than those of the other two corn varieties. However, its acid detergent fiber and cellulose contents were significantly lower than those of the other two corn varieties. Among the three corn variety silages, Yuqing386 had the highest relative abundance of Lactobacillus at the genus level and the biggest relative abundance of Firmicutes at the phylum level. In addition, the three additives markedly enhanced the quantity of dry matter and crude protein as compared to the control group. The application of GA considerably decreased the level of neutral detergent fiber while significantly increasing the content of lactic acid and water-soluble carbohydrates. Even though all additives enhanced the structure of the bacterial community following silage, the GA group experienced the greatest enhancement. On a phylum and genus level, the GA group contains the highest relative abundance of Firmicutes and Lactobacillus, respectively. Overall, of the three corn varieties, Yuqing386 provides the best silage qualities. GA has the biggest impact among the additions employed in this experiment to enhance the nutritional preservation and fermentation quality of whole-plant corn silage.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.

          There is a need to standardize the NDF procedure. Procedures have varied because of the use of different amylases in attempts to remove starch interference. The original Bacillus subtilis enzyme Type IIIA (XIA) no longer is available and has been replaced by a less effective enzyme. For fiber work, a new enzyme has received AOAC approval and is rapidly displacing other amylases in analytical work. This enzyme is available from Sigma (Number A3306; Sigma Chemical Co., St. Louis, MO). The original publications for NDF and ADF (43, 53) and the Agricultural Handbook 379 (14) are obsolete and of historical interest only. Up to date procedures should be followed. Triethylene glycol has replaced 2-ethoxyethanol because of reported toxicity. Considerable development in regard to fiber methods has occurred over the past 5 yr because of a redefinition of dietary fiber for man and monogastric animals that includes lignin and all polysaccharides resistant to mammalian digestive enzymes. In addition to NDF, new improved methods for total dietary fiber and nonstarch polysaccharides including pectin and beta-glucans now are available. The latter are also of interest in rumen fermentation. Unlike starch, their fermentations are like that of cellulose but faster and yield no lactic acid. Physical and biological properties of carbohydrate fractions are more important than their intrinsic composition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms

            DNA sequencing continues to decrease in cost with the Illumina HiSeq2000 generating up to 600 Gb of paired-end 100 base reads in a ten-day run. Here we present a protocol for community amplicon sequencing on the HiSeq2000 and MiSeq Illumina platforms, and apply that protocol to sequence 24 microbial communities from host-associated and free-living environments. A critical question as more sequencing platforms become available is whether biological conclusions derived on one platform are consistent with what would be derived on a different platform. We show that the protocol developed for these instruments successfully recaptures known biological results, and additionally that biological conclusions are consistent across sequencing platforms (the HiSeq2000 versus the MiSeq) and across the sequenced regions of amplicons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Klebsiella spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors

              Bacteria belonging to the genus Klebsiella frequently cause human nosocomial infections. In particular, the medically most important Klebsiella species, Klebsiella pneumoniae, accounts for a significant proportion of hospital-acquired urinary tract infections, pneumonia, septicemias, and soft tissue infections. The principal pathogenic reservoirs for transmission of Klebsiella are the gastrointestinal tract and the hands of hospital personnel. Because of their ability to spread rapidly in the hospital environment, these bacteria tend to cause nosocomial outbreaks. Hospital outbreaks of multidrug-resistant Klebsiella spp., especially those in neonatal wards, are often caused by new types of strains, the so-called extended-spectrum-β-lactamase (ESBL) producers. The incidence of ESBL-producing strains among clinical Klebsiella isolates has been steadily increasing over the past years. The resulting limitations on the therapeutic options demand new measures for the management of Klebsiella hospital infections. While the different typing methods are useful epidemiological tools for infection control, recent findings about Klebsiella virulence factors have provided new insights into the pathogenic strategies of these bacteria. Klebsiella pathogenicity factors such as capsules or lipopolysaccharides are presently considered to be promising candidates for vaccination efforts that may serve as immunological infection control measures.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                17 October 2022
                2022
                : 13
                : 1028001
                Affiliations
                College of Animal Science and Technology, Henan University of Science and Technology , Luoyang, China
                Author notes

                Edited by: Haiyan Li, Kunming University of Science and Technology, China

                Reviewed by: Zongfu Hu, Inner Mongolia Minzu University, China; Ping Li, Guizhou University, China

                *Correspondence: Yuqin Wang, wangyq6836@ 123456163.com

                These authors have contributed equally to this work

                This article was submitted to Microbiotechnology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2022.1028001
                9618603
                36325018
                b1147c24-43c7-4aea-856d-1e8c8882c546
                Copyright © 2022 Zhang, Wang, Wang, Zhao, Zhang, Jia, Zhai, Zhao and Li.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 August 2022
                : 16 September 2022
                Page count
                Figures: 5, Tables: 5, Equations: 0, References: 72, Pages: 16, Words: 12921
                Funding
                Funded by: Research and Development , doi 10.13039/100006190;
                Award ID: 2018YFD0502001
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                whole-plant corn silage,bacillus subtilis,gallic acid,cellulases,fermentation quality,bacterial community

                Comments

                Comment on this article