28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry and applications

      1 , 2 , 3 , 4 , 5
      Journal of Materials Chemistry A
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tungsten is the heaviest transition metal in the family of common transition metal dichalcogenides (TMDCs).

          Abstract

          Tungsten is the heaviest transition metal in the family of common transition metal dichalcogenides (TMDCs). Despite the essential similarities of TMDCs, the considerable differences in the size and charge of the building elements can make the typical 2D layered structure suitable for various applications. There is not much flexibility on the chalcogen side, as the popular elements are S and Se. Following the successful history of transition metal sulphides in various applications, transition metal selenides are now the rising stars. On the transition metal side, WS 2 and WSe 2 have recently attracted considerable attention. In comparison with the Mo counterparts, W is more abundant in the Earth's crust and thus cheaper, and less toxic. The significantly larger size of W atoms can substantially tune the TMDC properties. The popularity of molybdenum dichalcogenides has somehow overshadowed the potentials of tungsten dichalcogenides. This manuscript attempts to collect the recent reports on various applications of WS 2 and WSe 2 to provide a general overview of tungsten dichalcogenides. Due to the popularity of sulphides, the prime focus of the present review is on WSe 2, which is an emerging member of this family. Although WTe 2 is not a common material like all transition metal tellurides, it is also briefly reviewed as a member of this sub-family of TMDCs owing to its unique properties, which named it as a potential candidate for giant magnetoresistance and superconductivity.

          Related collections

          Most cited references266

          • Record: found
          • Abstract: not found
          • Article: not found

          Graphene-like two-dimensional materials.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High performance multilayer MoS2 transistors with scandium contacts.

            While there has been growing interest in two-dimensional (2-D) crystals other than graphene, evaluating their potential usefulness for electronic applications is still in its infancy due to the lack of a complete picture of their performance potential. The focus of this article is on contacts. We demonstrate that through a proper understanding and design of source/drain contacts and the right choice of number of MoS(2) layers the excellent intrinsic properties of this 2-D material can be harvested. Using scandium contacts on 10-nm-thick exfoliated MoS(2) flakes that are covered by a 15 nm Al(2)O(3) film, high effective mobilities of 700 cm(2)/(V s) are achieved at room temperature. This breakthrough is largely attributed to the fact that we succeeded in eliminating contact resistance effects that limited the device performance in the past unrecognized. In fact, the apparent linear dependence of current on drain voltage had mislead researchers to believe that a truly Ohmic contact had already been achieved, a misconception that we also elucidate in the present article.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides

              We show that inversion symmetry breaking together with spin-orbit coupling leads to coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, making possible controls of spin and valley in these 2D materials. The spin-valley coupling at the valence band edges suppresses spin and valley relaxation, as flip of each index alone is forbidden by the valley contrasting spin splitting. Valley Hall and spin Hall effects coexist in both electron-doped and hole-doped systems. Optical interband transitions have frequency-dependent polarization selection rules which allow selective photoexcitation of carriers with various combination of valley and spin indices. Photo-induced spin Hall and valley Hall effects can generate long lived spin and valley accumulations on sample boundaries. The physics discussed here provides a route towards the integration of valleytronics and spintronics in multi-valley materials with strong spin-orbit coupling and inversion symmetry breaking.
                Bookmark

                Author and article information

                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2017
                2017
                : 5
                : 35
                : 18299-18325
                Affiliations
                [1 ]The Engineering Research Institute
                [2 ]Ulster University
                [3 ]Newtownabbey BT37 OQB
                [4 ]UK
                [5 ]School of Chemistry and Chemical Engineering
                Article
                10.1039/C7TA04268J
                b1120ce6-e858-48cd-8427-9716729f57cf
                © 2017
                History

                Comments

                Comment on this article