14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Direct Readout of Neural Stem Cell Transgenesis with an Integration-Coupled Gene Expression Switch

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Stable genomic integration of exogenous transgenes is essential in neurodevelopmental and stem cell studies. Despite tools driving increasingly efficient genomic insertion with DNA vectors, transgenesis remains fundamentally hindered by the impossibility of distinguishing integrated from episomal transgenes. Here, we introduce an integration-coupled On genetic switch, iOn, which triggers gene expression upon incorporation into the host genome through transposition, thus enabling rapid and accurate identification of integration events following transfection with naked plasmids. In vitro, iOn permits rapid drug-free stable transgenesis of mouse and human pluripotent stem cells with multiple vectors. In vivo, we demonstrate faithful cell lineage tracing, assessment of regulatory elements, and mosaic analysis of gene function in somatic transgenesis experiments that reveal neural progenitor potentialities and interaction. These results establish iOn as a universally applicable strategy to accelerate and simplify genetic engineering in cultured systems and model organisms by conditioning transgene activation to genomic integration.

          Graphical Abstract

          Highlights

          • A gene expression switch powered by genomic integration

          • Accelerated readout of additive transgenesis with one or multiple vectors

          • Faithful lineage tracing and mosaic analysis by somatic transfection

          • Near-universal applicability in cultured cells and animal models

          Abstract

          Kumamoto et al. introduce iOn, a genetic switch that conditions exogenous transgene expression to integration in the host cell genome by DNA transposition. This system radically simplifies stable transgenesis with one or multiple plasmid vectors, opening new options to genetically manipulate cells in cultured systems and model organisms.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Human induced pluripotent stem cells free of vector and transgene sequences.

          Reprogramming differentiated human cells to induced pluripotent stem (iPS) cells has applications in basic biology, drug development, and transplantation. Human iPS cell derivation previously required vectors that integrate into the genome, which can create mutations and limit the utility of the cells in both research and clinical applications. We describe the derivation of human iPS cells with the use of nonintegrating episomal vectors. After removal of the episome, iPS cells completely free of vector and transgene sequences are derived that are similar to human embryonic stem (ES) cells in proliferative and developmental potential. These results demonstrate that reprogramming human somatic cells does not require genomic integration or the continued presence of exogenous reprogramming factors and removes one obstacle to the clinical application of human iPS cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurons derived from radial glial cells establish radial units in neocortex.

            The neocortex of the adult brain consists of neurons and glia that are generated by precursor cells of the embryonic ventricular zone. In general, glia are generated after neurons during development, but radial glia are an exception to this rule. Radial glia are generated before neurogenesis and guide neuronal migration. Radial glia are mitotically active throughout neurogenesis, and disappear or become astrocytes when neuronal migration is complete. Although the lineage relationships of cortical neurons and glia have been explored, the clonal relationship of radial glia to other cortical cells remains unknown. It has been suggested that radial glia may be neuronal precursors, but this has not been demonstrated in vivo. We have used a retroviral vector encoding enhanced green fluorescent protein to label precursor cells in vivo and have examined clones 1-3 days later using morphological, immunohistochemical and electrophysiological techniques. Here we show that clones consist of mitotic radial glia and postmitotic neurons, and that neurons migrate along clonally related radial glia. Time-lapse images show that proliferative radial glia generate neurons. Our results support the concept that a lineage relationship between neurons and proliferative radial glia may underlie the radial organization of neocortex.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A hyperactive piggyBac transposase for mammalian applications.

              DNA transposons have been widely used for transgenesis and insertional mutagenesis in various organisms. Among the transposons active in mammalian cells, the moth-derived transposon piggyBac is most promising with its highly efficient transposition, large cargo capacity, and precise repair of the donor site. Here we report the generation of a hyperactive piggyBac transposase. The active transposition of piggyBac in multiple organisms allowed us to screen a transposase mutant library in yeast for hyperactive mutants and then to test candidates in mouse ES cells. We isolated 18 hyperactive mutants in yeast, among which five were also hyperactive in mammalian cells. By combining all mutations, a total of 7 aa substitutions, into a single reading frame, we generated a unique hyperactive piggyBac transposase with 17-fold and ninefold increases in excision and integration, respectively. We showed its applicability by demonstrating an increased efficiency of generation of transgene-free mouse induced pluripotent stem cells. We also analyzed whether this hyperactive piggyBac transposase affects the genomic integrity of the host cells. The frequency of footprints left by the hyperactive piggyBac transposase was as low as WT transposase (~1%) and we found no evidence that the expression of the transposase affects genomic integrity. This hyperactive piggyBac transposase expands the utility of the piggyBac transposon for applications in mammalian genetics and gene therapy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neuron
                Neuron
                Neuron
                Cell Press
                0896-6273
                1097-4199
                19 August 2020
                19 August 2020
                : 107
                : 4
                : 617-630.e6
                Affiliations
                [1 ]Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
                [2 ]Institut du Fer à Moulin, 75005 Paris, France
                [3 ]INSERM, UMR-S 1270, 75005 Paris, France
                [4 ]Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
                [5 ]Early Mammalian Development and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France
                [6 ]Cell Division and Neurogenesis, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, Inserm, PSL Université Paris, Paris, France
                Author notes
                []Corresponding author jean.livet@ 123456inserm.fr
                [7]

                These authors contributed equally

                [8]

                Lead Contact

                Article
                S0896-6273(20)30407-4
                10.1016/j.neuron.2020.05.038
                7447981
                32559415
                b103bb2f-cbf1-45b3-aa74-784b684cf93a
                © 2020 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 12 June 2019
                : 22 April 2020
                : 26 May 2020
                Categories
                Article

                Neurosciences
                genetic switch,somatic transgenesis,lineage tracing,mosaic analysis,dna vectors,transposon systems,genomic integration,neural stem cells,genetic engineering

                Comments

                Comment on this article