20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Calf circumference: cutoff values from the NHANES 1999–2006

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Background

          Calf circumference (CC) is used in geriatric studies as a simple and practical skeletal muscle (SM) marker for diagnosing low SM and sarcopenia. Currently applied CC cutoff points were developed in samples including older participants; values representative of the full adult lifespan are lacking.

          Objectives

          We aimed to develop CC cutoff points and to identify relevant confounding factors from the large and diverse NHANES 1999–2006 population sample.

          Methods

          Demographic, anthropometric, and imaging data (DXA, appendicular lean mass) from the adult (age ≥18 y) NHANES sample were partitioned into subgroups according to sex, age, ethnicity, and race. Adults aged 18–39 y and BMI (in kg/m2) 18.5–24.9 were set as a reference population; CC cutoff points were derived at 1 and 2 SDs below the mean.

          Results

          The sample included 17,789 participants, 51.3% males and 48.7% females, with respective ages (mean ± SD) of 43.3 ± 16.1 y and 45.5 ± 16.9 y. CC was strongly correlated with appendicular lean mass, r = 0.84 and 0.86 for males and females (both P < 0.001), respectively. Significant differences in mean CC were present across sex, ethnic, self-reported race, and BMI groups. Adjusting CC for adiposity using BMI revealed a decrease in CC beginning after the second decade in males and third decade in females. Rounded CC cutoff values for moderately and severely low CC were 34 cm and 32 cm (males), and 33 cm and 31 cm (females), respectively. Our findings support the use of BMI-adjusted CC values for participants outside the normal-weight BMI range (18–24.9).

          Conclusions

          This study defined CC values in a diverse population sample along with a BMI-adjustment approach that helps to remove the confounding effects of adiposity and thereby improves CC as a useful clinical estimate of SM mass.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Sarcopenia: revised European consensus on definition and diagnosis

          Abstract Background in 2010, the European Working Group on Sarcopenia in Older People (EWGSOP) published a sarcopenia definition that aimed to foster advances in identifying and caring for people with sarcopenia. In early 2018, the Working Group met again (EWGSOP2) to update the original definition in order to reflect scientific and clinical evidence that has built over the last decade. This paper presents our updated findings. Objectives to increase consistency of research design, clinical diagnoses and ultimately, care for people with sarcopenia. Recommendations sarcopenia is a muscle disease (muscle failure) rooted in adverse muscle changes that accrue across a lifetime; sarcopenia is common among adults of older age but can also occur earlier in life. In this updated consensus paper on sarcopenia, EWGSOP2: (1) focuses on low muscle strength as a key characteristic of sarcopenia, uses detection of low muscle quantity and quality to confirm the sarcopenia diagnosis, and identifies poor physical performance as indicative of severe sarcopenia; (2) updates the clinical algorithm that can be used for sarcopenia case-finding, diagnosis and confirmation, and severity determination and (3) provides clear cut-off points for measurements of variables that identify and characterise sarcopenia. Conclusions EWGSOP2's updated recommendations aim to increase awareness of sarcopenia and its risk. With these new recommendations, EWGSOP2 calls for healthcare professionals who treat patients at risk for sarcopenia to take actions that will promote early detection and treatment. We also encourage more research in the field of sarcopenia in order to prevent or delay adverse health outcomes that incur a heavy burden for patients and healthcare systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment

            Clinical and research interest in sarcopenia has burgeoned internationally, Asia included. The Asian Working Group for Sarcopenia (AWGS) 2014 consensus defined sarcopenia as "age-related loss of muscle mass, plus low muscle strength, and/or low physical performance" and specified cutoffs for each diagnostic component; research in Asia consequently flourished, prompting this update. AWGS 2019 retains the previous definition of sarcopenia but revises the diagnostic algorithm, protocols, and some criteria: low muscle strength is defined as handgrip strength <28 kg for men and <18 kg for women; criteria for low physical performance are 6-m walk <1.0 m/s, Short Physical Performance Battery score ≤9, or 5-time chair stand test ≥12 seconds. AWGS 2019 retains the original cutoffs for height-adjusted muscle mass: dual-energy X-ray absorptiometry, <7.0 kg/m2 in men and <5.4 kg/m2 in women; and bioimpedance, <7.0 kg/m2 in men and <5.7 kg/m2 in women. In addition, the AWGS 2019 update proposes separate algorithms for community vs hospital settings, which both begin by screening either calf circumference (<34 cm in men, <33 cm in women), SARC-F (≥4), or SARC-CalF (≥11), to facilitate earlier identification of people at risk for sarcopenia. Although skeletal muscle strength and mass are both still considered fundamental to a definitive clinical diagnosis, AWGS 2019 also introduces "possible sarcopenia," defined by either low muscle strength or low physical performance only, specifically for use in primary health care or community-based health promotion, to enable earlier lifestyle interventions. Although defining sarcopenia by body mass index-adjusted muscle mass instead of height-adjusted muscle mass may predict adverse outcomes better, more evidence is needed before changing current recommendations. Lifestyle interventions, especially exercise and nutritional supplementation, prevail as mainstays of treatment. Further research is needed to investigate potential long-term benefits of lifestyle interventions, nutritional supplements, or pharmacotherapy for sarcopenia in Asians.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Statistics corner: A guide to appropriate use of correlation coefficient in medical research.

              M M Mukaka (2012)
              Correlation is a statistical method used to assess a possible linear association between two continuous variables. It is simple both to calculate and to interpret. However, misuse of correlation is so common among researchers that some statisticians have wished that the method had never been devised at all. The aim of this article is to provide a guide to appropriate use of correlation in medical research and to highlight some misuse. Examples of the applications of the correlation coefficient have been provided using data from statistical simulations as well as real data. Rule of thumb for interpreting size of a correlation coefficient has been provided.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                The American Journal of Clinical Nutrition
                Oxford University Press (OUP)
                0002-9165
                1938-3207
                June 2021
                June 01 2021
                March 19 2021
                June 2021
                June 01 2021
                March 19 2021
                : 113
                : 6
                : 1679-1687
                Affiliations
                [1 ]Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
                [2 ]Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
                [3 ]Louisiana State University, Baton Rouge, LA, USA
                [4 ]Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
                Article
                10.1093/ajcn/nqab029
                33742191
                b0ec96af-5258-41ca-8b48-a99d01c8de5f
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article