15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Microglia and the aging brain: are senescent microglia the key to neurodegeneration?

      1 , 1
      Journal of Neurochemistry
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: found

          Aging, Cellular Senescence, and Cancer

          For most species, aging promotes a host of degenerative pathologies that are characterized by debilitating losses of tissue or cellular function. However, especially among vertebrates, aging also promotes hyperplastic pathologies, the most deadly of which is cancer. In contrast to the loss of function that characterizes degenerating cells and tissues, malignant (cancerous) cells must acquire new (albeit aberrant) functions that allow them to develop into a lethal tumor. This review discusses the idea that, despite seemingly opposite characteristics, the degenerative and hyperplastic pathologies of aging are at least partly linked by a common biological phenomenon: a cellular stress response known as cellular senescence. The senescence response is widely recognized as a potent tumor suppressive mechanism. However, recent evidence strengthens the idea that it also drives both degenerative and hyperplastic pathologies, most likely by promoting chronic inflammation. Thus, the senescence response may be the result of antagonistically pleiotropic gene action.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Microglial Sensome Revealed by Direct RNA Sequencing

            Microglia, the principal neuroimmune sentinels of the brain, continuously sense changes in their environment and respond to invading pathogens, toxins and cellular debris. Microglia exhibit plasticity and can assume neurotoxic or neuroprotective priming states that determine their responses to danger. We used direct RNA sequencing, without amplification or cDNA synthesis, to determine the quantitative transcriptomes of microglia of healthy adult and aged mice. We validated our findings by fluorescent dual in-situ hybridization, unbiased proteomic analysis and quantitative PCR. We report here that microglia have a distinct transcriptomic signature and express a unique cluster of transcripts encoding proteins for sensing endogenous ligands and microbes that we term the “sensome”. With aging, sensome transcripts for endogenous ligand recognition are downregulated, whereas those involved in microbe recognition and host defense are upregulated. In addition, aging is associated with an overall increase in expression of microglial genes involved in neuroprotection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions.

              Microglia are crucially important myeloid cells in the CNS and constitute the first immunological barrier against pathogens and environmental insults. The factors controlling microglia recruitment from the blood remain elusive and the direct circulating microglia precursor has not yet been identified in vivo. Using a panel of bone marrow chimeric and adoptive transfer experiments, we found that circulating Ly-6C(hi)CCR2(+) monocytes were preferentially recruited to the lesioned brain and differentiated into microglia. Notably, microglia engraftment in CNS pathologies, which are not associated with overt blood-brain barrier disruption, required previous conditioning of brain (for example, by direct tissue irradiation). Our results identify Ly-6C(hi)CCR2(+) monocytes as direct precursors of microglia in the adult brain and establish the importance of local factors in the adult CNS for microglia engraftment.
                Bookmark

                Author and article information

                Journal
                Journal of Neurochemistry
                J. Neurochem.
                Wiley
                0022-3042
                1471-4159
                October 20 2019
                December 2019
                October 20 2019
                December 2019
                : 151
                : 6
                : 676-688
                Affiliations
                [1 ]Department of Biology and Biochemistry University of Bath Bath UK
                Article
                10.1111/jnc.14860
                31478208
                b0e6b52e-6811-4855-8e2d-80220819f11b
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article