71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Replication, Neurotropism, and Pathogenicity of Avian Paramyxovirus Serotypes 1–9 in Chickens and Ducks

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Avian paramyxovirus (APMV) serotypes 1–9 have been isolated from many different avian species. APMV-1 (Newcastle disease virus) is the only well-characterized serotype, because of the high morbidity, mortality, and economic loss caused by highly virulent strains. Very little is known about the pathogenesis, replication, virulence, and tropism of the other APMV serotypes. Here, this was evaluated for prototypes strains of APMV serotypes 2–9 in cell culture and in chickens and ducks. In cell culture, only APMV-1, -3 and -5 induced syncytium formation. In chicken DF1 cells, APMV-3 replicated with an efficiency approaching that of APMV-1, while APMV-2 and -5 replicated to lower, intermediate titers and the others were much lower. Mean death time (MDT) assay in chicken eggs and intracerebral pathogenicity index (ICPI) test in 1-day-old SPF chicks demonstrated that APMV types 2–9 were avirulent. Evaluation of replication in primary neuronal cells in vitro as well as in the brains of 1-day-old chicks showed that, among types 2–9, only APMV-3 was neurotropic, although this virus was not neurovirulent. Following intranasal infection of 1-day-old and 2-week-old chickens, replication of APMV types 2–9 was mostly restricted to the respiratory tract, although APMV-3 was neuroinvasive and neurotropic (but not neurovirulent) and also was found in the spleen. Experimental intranasal infection of 3-week-old mallard ducks with the APMVs did not produce any clinical signs (even for APMV-1) and exhibited restricted viral replication of the APMVs (including APMV-1) to the upper respiratory tract regardless of their isolation source, indicating avirulence of APMV types 1–9 in mallard ducks. The link between the presence of a furin cleavage site in the F protein, syncytium formation, systemic spread, and virulence that has been well-established with APMV-1 pathotypes was not evident with the other APMV serotypes.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA.

          The addition of the hepatitis delta virus genomic ribozyme to the 3' end sequence of a Sendai virus defective interfering RNA (DI-H4) allowed the reproducible and efficient replication of this RNA by the viral functions expressed from cloned genes when the DI RNA was synthesized from plasmid. Limited nucleotide additions or deletions (+7 to -7 nucleotides) in the DI RNA sequence were then made at five different sites, and the different RNA derivatives were tested for their abilities to replicate. Efficient replication was observed only when the total nucleotide number was conserved, regardless of the modifications, or when the addition of a total of 6 nucleotides was made. The replicated RNAs were shown to be properly enveloped into virus particles. It is concluded that, to form a proper template for efficient replication, the Sendai virus RNA must contain a total number of nucleotides which is a multiple of 6. This was interpreted as the need for the nucleocapsid protein to contact exactly 6 nucleotides.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures

            Paramyxoviruses enter cells by fusion of their lipid envelope with the target cell plasma membrane. Fusion of the viral membrane with the plasma membrane allows entry of the viral genome into the cytoplasm. For paramyxoviruses, membrane fusion occurs at neutral pH, but the trigger mechanism that controls the viral entry machinery such that it occurs at the right time and in the right place remains to be elucidated. Two viral glycoproteins are key to the infection process—an attachment protein that varies among different paramyxoviruses and the fusion (F) protein, which is found in all paramyxoviruses. For many of the paramyxoviruses (parainfluenza viruses 1–5, mumps virus, Newcastle disease virus and others), the attachment protein is the hemagglutinin/neuraminidase (HN) protein. In the last 5 years, atomic structures of paramyxovirus F and HN proteins have been reported. The knowledge gained from these structures towards understanding the mechanism of viral membrane fusion is described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein.

              Virulence of Newcastle disease virus (NDV) is mainly determined by the amino acid sequence surrounding the fusion (F) protein cleavage site, since host proteases that cleave the F protein of virulent strains are present in more tissues than those that cleave the F protein of non-virulent strains. Nevertheless, comparison of NDV strains that carry exactly the same F protein cleavage site shows that significant differences in virulence still exist. For instance, virulent field strain Herts/33 with the F cleavage site 112RRQRRF117 had an intracerebral pathogenicity index of 1.88 compared with 1.28 for strain NDFLtag, which has the same cleavage site. This implies that additional factors contribute to virulence. After generating an infectious clone of Herts/33 (FL-Herts), we were able to map the location of additional virulence factors by exchanging sequences between FL-Herts and NDFLtag. The results showed that, in addition to the F protein cleavage site, the haemagglutinin-neuraminidase (HN) protein also contributed to virulence. The effect of the HN protein on virulence was most prominent after intravenous inoculation. Interestingly, both the stem region and the globular head of the HN protein seem to be involved in determining virulence.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                30 April 2012
                : 7
                : 4
                : e34927
                Affiliations
                [1 ]Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
                [2 ]Experimental Transplantation and Immunology Branch, National Cancer Institute/National Institute of Health, Bethesda, Maryland, United States of America
                [3 ]Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
                Texas Veterinary Medical DIagnostic Laboratory-Amarillo, Texas A&M System, United States of America
                Author notes

                Conceived and designed the experiments: SHK PLC SKS. Performed the experiments: SHK SX. Analyzed the data: SHK SX HS. Contributed reagents/materials/analysis tools: PLC SKS. Wrote the paper: SHK PLC SKS.

                Article
                PONE-D-12-02907
                10.1371/journal.pone.0034927
                3340391
                22558104
                b0d3d092-f673-4bae-a0d8-3bf711378c00
                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
                History
                : 30 January 2012
                : 8 March 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Agriculture
                Agricultural Production
                Animal Management
                Biology
                Microbiology
                Applied Microbiology
                Medical Microbiology
                Microbial Pathogens
                Virology
                Molecular Cell Biology
                Medicine
                Infectious Diseases
                Infectious Disease Control
                Infectious Diseases of the Nervous System
                Viral Diseases
                Public Health
                Veterinary Science
                Veterinary Diseases
                Veterinary Virology
                Veterinary Medicine
                Small Animal Care
                Veterinary Neurology
                Veterinary Microbiology
                Veterinary Pathology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article