52
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms of Guided Bone Regeneration: A Review

      research-article
      , *
      The Open Dentistry Journal
      Bentham Open
      Bone regeneration, implant, ridge augmentation.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Post-extraction crestal bone resorption is common and unavoidable which can lead to significant ridge dimensional changes. To regenerate enough bone for successful implant placement, Guided Bone Regeneration (GBR) is often required. GBR is a surgical procedure that uses barrier membranes with or without particulate bone grafts or/and bone substitutes. There are two approaches of GBR in implant therapy: GBR at implant placement (simultaneous approach) and GBR before implant placement to increase the alveolar ridge or improve ridge morphology (staged approach). Angiogenesis and ample blood supply play a critical role in promoting bone regeneration.

          Related collections

          Most cited references171

          • Record: found
          • Abstract: found
          • Article: not found

          Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review.

          To review the literature to assess the amount of change in height and width of the residual ridge after tooth extraction. MEDLINE-PubMed and the Cochrane Central register of controlled trials (CENTRAL) were searched through up to March 2009. Appropriate studies which data reported concerning the dimensional changes in alveolar height and width after tooth extraction were included. Approximal height change, mid-buccal change, mid-crestal change, mid-lingual change, Alveolar width change and socket fill were selected as outcome variables. Mean values and if available standard deviations were extracted. Weighted mean changes were calculated. Independent screening of the titles and abstracts of 1244 MEDLINE-PubMed and 106 Cochrane papers resulted in 12 publications that met the eligibility criteria. The reduction in width of the alveolar ridges was 3.87 mm. The mean clinical mid-buccal height loss was 1.67 mm. The mean crestal height change as assessed on the radiographs was 1.53 mm. Socket fill in height as measured relative to the original socket floor was on an average 2.57 mm. During the post-extraction healing period, the weighted mean changes as based on the data derived from the individual selected studies show the clinical loss in width to be greater than the loss in height, assessed both clinically as well as radiographically.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Healing of bone defects by guided tissue regeneration.

            In this study we describe a principle for the accomplishment of bone regeneration based on the hypothesis that different cellular components in the tissue have varying rates of migration into a wound area during healing. By a mechanical hindrance, using a membrane technique, fibroblasts and other soft connective-tissue cells are prevented from entering the bone defect so that the presumably slower-migrating cells with osteogenic potential are allowed to repopulate the defect. Defects of standard size were created bilaterally through the mandibular angles of rats. On one side of the jaw the defect was covered with Teflon membranes, whereas the defect on the other side served as control. Histologic analysis after healing demonstrated that on the test (membrane) side, half the number of animals showed complete bone healing after 3 weeks and all animals showed complete healing after 6 weeks. Little or no sign of healing was evident on the control side even after an observation period of 22 weeks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Collagen membranes: a review.

              Collagen materials have been utilized in medicine and dentistry because of their proven biocompatability and capability of promoting wound healing. For guided tissue regeneration (GTR) procedures, collagen membranes have been shown to be comparable to non-absorbable membranes with regard to probing depth reduction, clinical attachment gain, and percent of bone fill. Although these membranes are absorbable, collagen membranes have been demonstrated to prevent epithelial down-growth along the root surfaces during the early phase of wound healing. The use of grafting material in combination with collagen membranes seems to improve clinical outcomes for furcation, but not intrabony, defects when compared to the use of membranes alone. Recently, collagen materials have also been applied in guided bone regeneration (GBR) and root coverage procedures with comparable success rates to non-absorbable expanded polytetrafluoroethylene (ePTFE) membranes and conventional subepithelial connective tissue grafts, respectively. Long-term clinical trials are still needed to further evaluate the benefits of collagen membranes in periodontal and peri-implant defects. This article will review the rationale for each indication and its related literature, both in vitro and in vivo studies. The properties that make collagen membranes attractive for use in regenerative therapy will be addressed. In addition, varieties of cross-linking techniques utilized to retard the degradation rate of collagen membranes will be discussed.
                Bookmark

                Author and article information

                Journal
                Open Dent J
                Open Dent J
                TODENTJ
                The Open Dentistry Journal
                Bentham Open
                1874-2106
                16 May 2014
                2014
                : 8
                : 56-65
                Affiliations
                Department of Periodontics, Baylor College of Dentistry, Texas A&M University, Dallas, TX
                Author notes
                [#]

                Private Practice, Houston, TX

                [* ]Address correspondence to this author at the Texas A&M University, Baylor College of Dentistry, Department of Periodontics, 3302 Gaston Ave. Dallas, TX 75246; Tel: 214-828-8282; Fax: 214-874-4563; E-mail: dkerns@ 123456bcd.tamhsc.edu
                Article
                TODENTJ-8-56
                10.2174/1874210601408010056
                4040931
                24894890
                b0be9e24-f62d-477b-8b7b-e581791f6c53
                © Liu and Kerns; Licensee Bentham Open.

                This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 10 January 2014
                : 5 January 2014
                : 12 February 2014
                Categories
                Article
                Suppl 1

                Dentistry
                bone regeneration,implant,ridge augmentation.
                Dentistry
                bone regeneration, implant, ridge augmentation.

                Comments

                Comment on this article