Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of Choroidal Vascularity in Children with Unilateral Hyperopic Amblyopia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This institutional case control study was carried out to compare choroidal vascularity (CV) in amblyopic eyes, fellow eyes, and control eyes in children with unilateral hyperopic amblyopia. Sixty-four eyes of 32 childeren with unilateral anisometropic hyperopic amblyopia and 38 eyes of 19 healthy children (controls), aged 3 to 16 years. Subfoveal choroidal thickness (CT) and CV were measured using spectral domain optical coherence tomography. The mean subfoveal CT of amblyopic eyes (338.9 ± 60.0 μm) was greater than that of fellow eyes (315.3 ± 63.3 μm, P = 0.043) and control eyes (313.0 ± 42.1 μm, P = 0.025). The mean CV of amblyopic eyes (0.715 ± 0.020) was greater than that of control eyes (0.700 ± 0.020, P < 0.001). While a positive correlation between CT and CV was found in normal eyes ( r = 0.470, P = 0.004), a strong negative correlation existed in amblyopic eyes ( r = −0.684, P < 0.001). In conclusion, although mean CV was higher in amblyopic eyes, the negative correlation between CT and CV may suggests insufficient blood supply to the outer retina and choroid in the affected eyes of patients with unilateral anisometropic hyperopic amblyopia.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study

          The vascularity of the choroid has been implicated in the pathogenesis of various eye diseases. To date, no established quantifiable parameters to estimate vascular status of the choroid exists. Choroidal vascularity index (CVI) may potentially be used to assess vascular status of the choroid. We aimed to establish normative database for CVI and identify factors associated with CVI in healthy eyes. In this population-based study on 345 healthy eyes, choroidal enhanced depth imaging optical coherence tomography scans were segmented by modified image binarization technique. Total subfoveal choroidal area (TCA) was segmented into luminal (LA) and stromal (SA) area. CVI was calculated as the proportion of LA to TCA. Linear regression was used to identify ocular and systemic factors associated with CVI and subfoveal choroidal thickness (SFCT). Subfoveal CVI ranged from 60.07 to 71.27% with a mean value of 65.61 ± 2.33%. CVI was less variable than SFCT (coefficient of variation for CVI was 3.55 vs 40.30 for SFCT). Higher CVI was associated with thicker SFCT, but not associated with most physiological variables. CVI was elucidated as a significant determinant of SFCT. While SFCT was affected by many factors, CVI remained unaffected suggesting CVI to be a more robust marker of choroidal diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography.

            To examine choroidal thickness and area in healthy eyes using spectral-domain optical coherence tomography (SD-OCT). Retrospective, observational case series. Thirty-four eyes (34 subjects), with no retinal or choroidal disease, underwent high-definition raster scanning using SD-OCT with frame enhancement software. Choroidal thickness was measured from the posterior edge of the retinal pigment epithelium to the choroid/sclera junction at 500-microm intervals up to 2500 microm temporal and nasal to the fovea. The central 1-mm area of the choroid was also measured, along with foveal thickness of the retina. All measurements were performed by 2 independent observers. Statistical analysis was used to correlate inter-observer findings, choroidal thickness and area measurements with age, and choroidal thickness with retinal foveal thickness. The 34 subjects had a mean age of 51.1 years. Reliable measurements of choroidal thickness were obtainable in 74% of eyes examined. Choroidal thickness and area measurements had strong inter-observer correlation (r = 0.92, P < .0001 and r = 0.93, P < .0001 respectively). Area had a moderate negative correlation with age (r = -0.62, P < .0001) that was comparable to the correlation between mean subfoveal choroidal thickness and age (r = -0.61, P < .0001). Retinal and choroidal thickness were found to be poorly correlated (r = -0.23, P = .18). Mean choroidal thickness showed a pattern of thinnest choroid nasally, thickening in the subfoveal region, and then thinning again temporally. Mean subfoveal choroidal thickness was found to be 272 microm (SD, +/- 81 microm). Choroidal thickness can be measured using SD-OCT high-definition raster scans in the majority of eyes. Choroidal thickness across the macula demonstrates a thin choroid nasally, thickest subfoveally, and again thinner temporally, and a trend toward decreasing choroidal thickness with age. Copyright (c) 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Moving the retina: choroidal modulation of refractive state.

              The chick eye is able to change its refractive state by as much as 7 D by pushing the retina forward or pulling it back; this is effected by changes in the thickness of the choroid, the vascular tissue behind the retina and pigment epithelium. Chick eyes first made myopic by wearing diffusers and then permitted unrestricted vision developed choroids several times thicker than normal within days, thereby speeding recovery from deprivation myopia. Choroidal expansion does not occur when visual cues are reduced by dim illumination during the period of unrestricted vision. Furthermore, in chick eyes presented with myopic or hyperopic defocus by means of spectacle lenses, the choroid expands or thins, respectively, in compensation for the specific defocus imposed. Consequently, when the lenses are removed, the eye finds its refractive error suddenly of opposite sign, and the choroidal thickness again compensates by changing in the opposite direction. If a local region of the eye is made myopic by a partial diffuser and then given unrestricted vision, the choroid expands only in the myopic region. Although the mechanism of choroidal expansion is unknown, it might involve either a increased routing of aqueous humor into the uveoscleral outflow or osmotically generated water movement into the choroid. The latter is compatible with the increased choroidal proteoglycan synthesis either when eyes wear positive lenses or after diffuser removal.
                Bookmark

                Author and article information

                Contributors
                nyeokang@catholic.ac.kr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                21 August 2019
                21 August 2019
                2019
                : 9
                : 12143
                Affiliations
                [1 ]ISNI 0000 0004 0470 4224, GRID grid.411947.e, Department of Ophthalmology, , Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, ; Gyeonggi-do, Korea
                [2 ]ISNI 0000 0004 0470 4224, GRID grid.411947.e, Department of Ophthalmology, , Catholic Medical Center, College of Medicine, The Catholic University of Korea, ; Seoul, Korea
                Author information
                http://orcid.org/0000-0001-6736-5379
                Article
                48613
                10.1038/s41598-019-48613-3
                6704087
                30626917
                b0ab2285-986a-4b61-ad0a-9ccc8727d0c5
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 4 April 2019
                : 8 August 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                vision disorders,diagnostic markers,retina
                Uncategorized
                vision disorders, diagnostic markers, retina

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,660

                Cited by10

                Most referenced authors268