6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Glypican-1 Is a Novel Target for Stroma and Tumor Cell Dual-Targeting Antibody–Drug Conjugates in Pancreatic Cancer

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pancreatic ductal adenocarcinoma (PDAC) is a stroma-rich cancer. Extracellular matrix proteins produced by cancer-associated fibroblasts (CAFs) found in tumor stroma that impedes effective delivery of chemotherapeutic agents results in poor response in patients with PDAC. Previously, our group reported that glypican-1 (GPC1) was overexpressed in human PDAC and negatively correlated with patient survival. Immunohistochemical analysis of 25 patients with PDAC tumor specimens revealed elevated expression of GPC1 in stromal cells and pancreatic cancer cells in 80% of patients. Interestingly, GPC1 was expressed on CAFs in PDAC. We generated a GPC1 antibody–drug conjugate conjugated with monomethyl auristatin E [GPC1-ADC(MMAE)] and evaluated its preclinical antitumor activity by targeting GPC1-positive CAF and cancer cells in PDAC. GPC1-ADC(MMAE) inhibited the growth of GPC1-positive PDAC cell lines in vitro. Furthermore, GPC1-ADC(MMAE) showed a potent antitumor effect in the PDAC patient-derived tumor xenograft (PDX) model against GPC1-positive CAF and heterogeneous GPC1-expressing cancer cells. Notably, GPC1-ADC(MMAE) showed robust preclinical efficacy against GPC1 in a stroma-positive/cancer-negative PDAC PDX model. GPC1-ADC(MMAE) was delivered and internalized to CAFs. Although apoptosis was not observed in CAFs, the released MMAE from CAFs via MDR-1 induced apoptosis of cancer cells neighboring CAFs and efficiently inhibited PDAC tumor growth. GPC1-ADC(MMAE) exhibited potent and unique antitumor activity in GPC1-positive PDAC PDX models, which suggests that GPC1 is a novel therapeutic target in PDAC and other stromal GPC1-positive solid tumors. These findings show that targeting GPC1 on CAF using GPC1-ADC(MMAE) is a useful approach in case of stroma-rich tumors such as PDAC.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          The biology and function of fibroblasts in cancer.

          Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glypican-1 identifies cancer exosomes and detects early pancreatic cancer.

            Exosomes are lipid-bilayer-enclosed extracellular vesicles that contain proteins and nucleic acids. They are secreted by all cells and circulate in the blood. Specific detection and isolation of cancer-cell-derived exosomes in the circulation is currently lacking. Using mass spectrometry analyses, we identify a cell surface proteoglycan, glypican-1 (GPC1), specifically enriched on cancer-cell-derived exosomes. GPC1(+) circulating exosomes (crExos) were monitored and isolated using flow cytometry from the serum of patients and mice with cancer. GPC1(+) crExos were detected in the serum of patients with pancreatic cancer with absolute specificity and sensitivity, distinguishing healthy subjects and patients with a benign pancreatic disease from patients with early- and late-stage pancreatic cancer. Levels of GPC1(+) crExos correlate with tumour burden and the survival of pre- and post-surgical patients. GPC1(+) crExos from patients and from mice with spontaneous pancreatic tumours carry specific KRAS mutations, and reliably detect pancreatic intraepithelial lesions in mice despite negative signals by magnetic resonance imaging. GPC1(+) crExos may serve as a potential non-invasive diagnostic and screening tool to detect early stages of pancreatic cancer to facilitate possible curative surgical therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunological hallmarks of stromal cells in the tumour microenvironment.

              A dynamic and mutualistic interaction between tumour cells and the surrounding stroma promotes the initiation, progression, metastasis and chemoresistance of solid tumours. Far less understood is the relationship between the stroma and tumour-infiltrating leukocytes; however, emerging evidence suggests that the stromal compartment can shape antitumour immunity and responsiveness to immunotherapy. Thus, there is growing interest in elucidating the immunomodulatory roles of the stroma that evolve within the tumour microenvironment. In this Review, we discuss the evidence that stromal determinants interact with leukocytes and influence antitumour immunity, with emphasis on the immunological attributes of stromal cells that may foster their protumorigenic function.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Molecular Cancer Therapeutics
                American Association for Cancer Research (AACR)
                1535-7163
                1538-8514
                December 01 2021
                December 3 2021
                December 01 2021
                December 3 2021
                : 20
                : 12
                : 2495-2505
                Article
                10.1158/1535-7163.MCT-21-0335
                34583978
                b06fa44a-f4bb-48ff-a36f-754bc1db4e9e
                © 2021
                History

                Comments

                Comment on this article