8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pseudomonas aeruginosa Regulated Intramembrane Proteolysis: Protease MucP Can Overcome Mutations in the AlgO Periplasmic Protease To Restore Alginate Production in Nonmucoid Revertants

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The progression of cystic fibrosis (CF) from an acute to a chronic disease is often associated with the conversion of the opportunistic pathogen Pseudomonas aeruginosa from a nonmucoid form to a mucoid form in the lung. This conversion involves the constitutive synthesis of the exopolysaccharide alginate, whose production is under the control of the AlgT/U sigma factor. This factor is regulated posttranslationally by an extremely unstable process and has been commonly attributed to mutations in the algT ( algU) gene. By exploiting this unstable phenotype, we isolated 34 spontaneous nonmucoid variants arising from the mucoid strain PDO300, a PAO1 derivative containing the mucA22 allele commonly found in mucoid CF isolates. Complementation analysis using a minimal tiling path cosmid library revealed that most of these mutants mapped to two protease-encoding genes, algO, also known as prc or PA3257, and mucP. Interestingly, our algO mutations were complemented by both mucP and algO, leading us to delete, clone, and overexpress mucP, algO, mucE, and mucD in both wild-type PAO1 and PDO300 backgrounds to better understand the regulation of this complex regulatory mechanism. Our findings suggest that the regulatory proteases follow two pathways for regulated intramembrane proteolysis (RIP), where both the AlgO/MucP pathway and MucE/AlgW pathway are required in the wild-type strain but where the AlgO/MucP pathway can bypass the MucE/AlgW pathway in mucoid strains with membrane-associated forms of MucA with shortened C termini, such as the MucA22 variant. This work gives us a better understanding of how alginate production is regulated in the clinically important mucoid variants of Pseudomonas aeruginosa.

          IMPORTANCE Infection by the opportunistic pathogen Pseudomonas aeruginosa is the leading cause of morbidity and mortality seen in CF patients. Poor patient prognosis correlates with the genotypic and phenotypic change of the bacteria from a typical nonmucoid to a mucoid form in the CF lung, characterized by the overproduction of alginate. The expression of this exopolysaccharide is under the control an alternate sigma factor, AlgT/U, that is regulated posttranslationally by a series of proteases. A better understanding of this regulatory phenomenon will help in the development of therapies targeting alginate production, ultimately leading to an increase in the length and quality of life for those suffering from CF.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa.

          Type III secretion systems are toxin delivery systems that are present in a large number of pathogens. A hallmark of all type III secretion systems studied to date is that expression of one or more of their components is induced upon cell contact. It has been proposed that this induction is controlled by a negative regulator that is itself secreted by means of the type III secretion machinery. Although candidate proteins for this negative regulator have been proposed in a number of systems, for the most part, a direct demonstration of their role in regulation is lacking. Here, we report the discovery of ExsE, a negative regulator of type III secretion gene expression in Pseudomonas aeruginosa. Deletion of exsE deregulates expression of the type III secretion genes. We provide evidence that ExsE is itself secreted by means of the type III secretion machinery and physically interacts with ExsC, a positive regulator of the type III secretion regulon. Taken together, these data demonstrate that ExsE is the secreted negative regulator that couples triggering of the type III secretion machinery to induction of the type III secretion genes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The sigma 70 family: sequence conservation and evolutionary relationships.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes.

              Using physical and genetic data, we have demonstrated that Rhizobium meliloti SU47 has a symbiotic megaplasmid, pRmeSU47b, in addition to the previously described nod-nif megaplasmid pRmeSU47a. This plasmid includes four loci involved in exopolysaccharide (exo) synthesis as well as two loci involved in thiamine biosynthesis. Mutations at the exo loci have previously been shown to result in the formation of nodules which lack infection threads (Inf-) and fail to fix nitrogen (Fix-). Thus, both megaplasmids contain genes involved in the formation of nitrogen-fixing root nodules. Mutations at two other exo loci were not located on either megaplasmid. To mobilize the megaplasmids, the oriT of plasmid RK2 was inserted into them. On alfalfa, Agrobacterium tumefaciens strains containing pRmeSU47a induced marked root hair curling with no infection threads and Fix- nodules, as reported by others. This plant phenotype was not observed to change with A. tumefaciens strains containing both pRmeSU47a and pRmeSU47b megaplasmids, and strains containing pRmeSU47b alone failed to curl root hairs or form nodules.
                Bookmark

                Author and article information

                Journal
                Journal of Bacteriology
                J Bacteriol
                American Society for Microbiology
                0021-9193
                1098-5530
                August 15 2018
                July 25 2018
                May 21 2018
                : 200
                : 16
                Article
                10.1128/JB.00215-18
                6060363
                29784885
                b05c44f0-3787-4d18-a4cb-441d66a559db
                © 2018
                History

                Comments

                Comment on this article