Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human organoids-on-chips for biomedical research and applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human organoids-on-chips (OrgOCs) are the synergism of human organoids (HOs) technology and microfluidic organs-on-chips (OOCs). OOCs can mimic extrinsic characteristics of organs, such as environmental clues of living tissue, while HOs are more amenable to biological analysis and genetic manipulation. By spatial cooperation, OrgOCs served as 3D organotypic living models allowing them to recapitulate critical tissue-specific properties and forecast human responses and outcomes. It represents a giant leap forward from the regular 2D cell monolayers and animal models in the improved human ecological niche modeling. In recent years, OrgOCs have offered potential promises for clinical studies and advanced the preclinical-to-clinical translation in medical and industrial fields. In this review, we highlight the cutting-edge achievements in OrgOCs, introduce the key features of OrgOCs architectures, and share the revolutionary applications in basic biology, disease modeling, preclinical assay and precision medicine. Furthermore, we discuss how to combine a wide range of disciplines with OrgOCs and accelerate translational applications, as well as the challenges and opportunities of OrgOCs in biomedical research and applications.

          Related collections

          Most cited references287

          • Record: found
          • Abstract: found
          • Article: not found

          Induction of pluripotent stem cells from adult human fibroblasts by defined factors.

          Successful reprogramming of differentiated human somatic cells into a pluripotent state would allow creation of patient- and disease-specific stem cells. We previously reported generation of induced pluripotent stem (iPS) cells, capable of germline transmission, from mouse somatic cells by transduction of four defined transcription factors. Here, we demonstrate the generation of iPS cells from adult human dermal fibroblasts with the same four factors: Oct3/4, Sox2, Klf4, and c-Myc. Human iPS cells were similar to human embryonic stem (ES) cells in morphology, proliferation, surface antigens, gene expression, epigenetic status of pluripotent cell-specific genes, and telomerase activity. Furthermore, these cells could differentiate into cell types of the three germ layers in vitro and in teratomas. These findings demonstrate that iPS cells can be generated from adult human fibroblasts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Microbiota-Gut-Brain Axis

            The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.

              We previously established long-term culture conditions under which single crypts or stem cells derived from mouse small intestine expand over long periods. The expanding crypts undergo multiple crypt fission events, simultaneously generating villus-like epithelial domains that contain all differentiated types of cells. We have adapted the culture conditions to grow similar epithelial organoids from mouse colon and human small intestine and colon. Based on the mouse small intestinal culture system, we optimized the mouse and human colon culture systems. Addition of Wnt3A to the combination of growth factors applied to mouse colon crypts allowed them to expand indefinitely. Addition of nicotinamide, along with a small molecule inhibitor of Alk and an inhibitor of p38, were required for long-term culture of human small intestine and colon tissues. The culture system also allowed growth of mouse Apc-deficient adenomas, human colorectal cancer cells, and human metaplastic epithelia from regions of Barrett's esophagus. We developed a technology that can be used to study infected, inflammatory, or neoplastic tissues from the human gastrointestinal tract. These tools might have applications in regenerative biology through ex vivo expansion of the intestinal epithelia. Studies of these cultures indicate that there is no inherent restriction in the replicative potential of adult stem cells (or a Hayflick limit) ex vivo. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2024
                1 January 2024
                : 14
                : 2
                : 788-818
                Affiliations
                [1 ]Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
                [2 ]College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
                [3 ]Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
                Author notes
                ✉ Corresponding authors: E-mail addresses: zhaof@ 123456dmu.edu.cn (F. Z.), zhaohui800@ 123456163.com (H. Z.), li_dong@ 123456ntu.edu.cn (D. L.).

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov14p0788
                10.7150/thno.90492
                10758054
                38169573
                b040faca-418f-4479-9c85-e3d59d47d9bc
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 25 September 2023
                : 9 December 2023
                Categories
                Review

                Molecular medicine
                organoids-on-chips,organs-on-chips,drug discovery,precision medicine,living organoid biobank

                Comments

                Comment on this article