91
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new insight into the transfer and delivery of anti-SARS-CoV-2 drug Carmofur with the assistance of graphene oxide quantum dot as a highly efficient nanovector toward COVID-19 by molecular dynamics simulation†

      research-article
      ,
      RSC Advances
      The Royal Society of Chemistry

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Currently, a preventive and curative treatment for COVID-19 is an urgent global issue. According to the fact that nanomaterial-based drug delivery systems as risk-free approaches for successful therapeutic strategies may led to immunization against COVID-19 pandemic, the delivery of Carmofur as a potential drug for the SARS-CoV-2 treatment via graphene oxide quantum dots (GOQDs) was investigated in silico using molecular dynamics (MD) simulation. MD simulation showed that π–π stacking together with hydrogen bonding played vital roles in the stability of the Carmofur–GOQD complex. Spontaneous attraction of GOQDs loaded with Carmofur toward the binding pocket of the main protease (M pro) resulted in the penetration of Carmofur into the active catalytic region. It was found that the presence of GOQD as an effective carrier in the loading and delivery of Carmofur inhibitor affected the structural conformation of M pro. Higher RMSF values of the key residues of the active site indicated their greater displacement to adopt Carmofur. These results suggested that the binding pocket of M pro is not stable during the interaction with the Carmofur–GOQD complex. This study provided insights into the potential application of graphene oxide quantum dots as an effective Carmofur drug delivery system for the treatment of COVID-19.

          Abstract

          Potential usage of graphene oxide quantum dot as a M pro inhibitor as well as an effective strategy in delivery of Carmofur into the active site of the main protease to combat COVID-19.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          A Novel Coronavirus from Patients with Pneumonia in China, 2019

          Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

            Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak

              Coronavirus disease (COVID-19) is caused by SARS-COV2 and represents the causative agent of a potentially fatal disease that is of great global public health concern. Based on the large number of infected people that were exposed to the wet animal market in Wuhan City, China, it is suggested that this is likely the zoonotic origin of COVID-19. Person-to-person transmission of COVID-19 infection led to the isolation of patients that were subsequently administered a variety of treatments. Extensive measures to reduce person-to-person transmission of COVID-19 have been implemented to control the current outbreak. Special attention and efforts to protect or reduce transmission should be applied in susceptible populations including children, health care providers, and elderly people. In this review, we highlights the symptoms, epidemiology, transmission, pathogenesis, phylogenetic analysis and future directions to control the spread of this fatal disease.
                Bookmark

                Author and article information

                Journal
                RSC Adv
                RSC Adv
                RA
                RSCACL
                RSC Advances
                The Royal Society of Chemistry
                2046-2069
                11 May 2022
                5 May 2022
                11 May 2022
                : 12
                : 22
                : 14167-14174
                Affiliations
                [a] Department of Chemistry, University of Birjand Birjand Iran hraeisi@ 123456birjand.ac.ir
                Author information
                https://orcid.org/0000-0002-5671-0568
                https://orcid.org/0000-0003-1473-1501
                Article
                d2ra01420c
                10.1039/d2ra01420c
                9092566
                35558858
                b0160631-21a9-4f32-ad33-ca1e443497b9
                This journal is © The Royal Society of Chemistry
                History
                : 3 March 2022
                : 25 April 2022
                Page count
                Pages: 8
                Categories
                Chemistry
                Custom metadata
                Paginated Article

                Comments

                Comment on this article