16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genotype-Phenotype Relationships and Endocrine Findings in Prader-Willi Syndrome

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prader-Willi syndrome (PWS) is a complex imprinting disorder related to genomic errors that inactivate paternally-inherited genes on chromosome 15q11-q13 with severe implications on endocrine, cognitive and neurologic systems, metabolism, and behavior. The absence of expression of one or more genes at the PWS critical region contributes to different phenotypes. There are three molecular mechanisms of occurrence: paternal deletion of the 15q11-q13 region; maternal uniparental disomy 15; or imprinting defects. Although there is a clinical diagnostic consensus criteria, DNA methylation status must be confirmed through genetic testing. The endocrine system can be the most affected in PWS, and growth hormone replacement therapy provides improvement in growth, body composition, and behavioral and physical attributes. A key feature of the syndrome is the hypothalamic dysfunction that may be the basis of several endocrine symptoms. Clinical and molecular complexity in PWS enhances the importance of genetic diagnosis in therapeutic definition and genetic counseling. So far, no single gene mutation has been described to contribute to this genetic disorder or related to any exclusive symptoms. Here we proposed to review individually disrupted genes within the PWS critical region and their reported clinical phenotypes related to the syndrome. While genes such as MKRN3, MAGEL2, NDN, or SNORD115 do not address the full spectrum of PWS symptoms and are less likely to have causal implications in PWS major clinical signs, SNORD116 has emerged as a critical, and possibly, a determinant candidate in PWS, in the recent years. Besides that, the understanding of the biology of the PWS SNORD genes is fairly low at the present. These non-coding RNAs exhibit all the hallmarks of RNA methylation guides and can be incorporated into ribonucleoprotein complexes with possible hypothalamic and endocrine functions. Also, DNA conservation between SNORD sequences across placental mammals strongly suggests that they have a functional role as RNA entities on an evolutionary basis. The broad clinical spectrum observed in PWS and the absence of a clear genotype-phenotype specific correlation imply that the numerous genes involved in the syndrome have an additive deleterious effect on different phenotypes when deficiently expressed.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: found
          • Article: not found

          Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors.

          Serotonin (5-hydroxytryptamine, 5-HT) is a monoaminergic neurotransmitter that is believed to modulate numerous sensory, motor and behavioural processes in the mammalian nervous system. These diverse responses are elicited through the activation of a large family of receptor subtypes. The complexity of this signalling system and the paucity of selective drugs have made it difficult to define specific roles for 5-HT receptor subtypes, or to determine how serotonergic drugs modulate mood and behaviour. To address these issues, we have generated mutant mice lacking functional 5-HT2C receptors (previously termed 5-HT1C), prominent G-protein-coupled receptors that are widely expressed throughout the brain and spinal cord and which have been proposed to mediate numerous central nervous system (CNS) actions of serotonin. Here we show that 5-HT2C receptor-deficient mice are overweight as a result of abnormal control of feeding behaviour, establishing a role for this receptor in the serotonergic control of appetite. Mutant animals are also prone to spontaneous death from seizures, suggesting that 5-HT2C receptors mediate tonic inhibition of neuronal network excitability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster.

            Prader-Willi syndrome (PWS) is caused by deficiency for one or more paternally expressed imprinted transcripts within chromosome 15q11-q13, including SNURF-SNRPN and multiple small nucleolar RNAs (snoRNAs). Balanced chromosomal translocations that preserve expression of SNURF-SNRPN and centromeric genes but separate the snoRNA HBII-85 cluster from its promoter cause PWS. A microdeletion of the HBII-85 snoRNAs in a child with PWS provides, in combination with previous data, effectively conclusive evidence that deficiency of HBII-85 snoRNAs causes the key characteristics of the PWS phenotype, although some atypical features suggest that other genes in the region may make more subtle phenotypic contributions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization.

              We have identified three C/D-box small nucleolar RNAs (snoRNAs) and one H/ACA-box snoRNA in mouse and human. In mice, all four snoRNAs (MBII-13, MBII-52, MBII-85, and MBI-36) are exclusively expressed in the brain, unlike all other known snoRNAs. Two of the human RNA orthologues (HBII-52 and HBI-36) share this expression pattern, and the remainder, HBII-13 and HBII-85, are prevalently expressed in that tissue. In mice and humans, the brain-specific H/ACA box snoRNA (MBI-36 and HBI-36, respectively) is intron-encoded in the brain-specific serotonin 2C receptor gene. The three human C/D box snoRNAs map to chromosome 15q11-q13, within a region implicated in the Prader-Willi syndrome (PWS), which is a neurogenetic disease resulting from a deficiency of paternal gene expression. Unlike other C/D box snoRNAs, two snoRNAs, HBII-52 and HBII-85, are encoded in a tandemly repeated array of 47 or 24 units, respectively. In mouse the homologue of HBII-52 is processed from intronic portions of the tandem repeats. Interestingly, these snoRNAs were absent from the cortex of a patient with PWS and from a PWS mouse model, demonstrating their paternal imprinting status and pointing to their potential role in the etiology of PWS. Despite displaying hallmarks of the two families of ubiquitous snoRNAs that guide 2'-O-ribose methylation and pseudouridylation of rRNA, respectively, they lack any telltale rRNA complementarity. Instead, brain-specific C/D box snoRNA HBII-52 has an 18-nt phylogenetically conserved complementarity to a critical segment of serotonin 2C receptor mRNA, pointing to a potential role in the processing of this mRNA.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                13 December 2019
                2019
                : 10
                : 864
                Affiliations
                Laboratório de Alta Complexidade, Instituto Nacional da Saúde da Mulher, da Criança e Do Adolescente Fernandes Figueira , Fiocruz, Rio de Janeiro, Brazil
                Author notes

                Edited by: Ana Rosa Pérez, National Council for Scientific and Technical Research, Argentina

                Reviewed by: Christian P. Schaaf, Heidelberg University, Germany; Dag H. Yasui, University of California, Davis, United States

                *Correspondence: Letícia da Cunha Guida leticia.guida@ 123456iff.fiocruz.br

                This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology

                †These authors have contributed equally to this work

                Article
                10.3389/fendo.2019.00864
                6923197
                31920975
                b00e0a9d-0dc0-4ded-a3b6-dff2bcf94369
                Copyright © 2019 Costa, Ferreira, Cintra, Gomes and Guida.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 September 2019
                : 26 November 2019
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 151, Pages: 11, Words: 9258
                Funding
                Funded by: Fundação Oswaldo Cruz 10.13039/501100006507
                Categories
                Endocrinology
                Review

                Endocrinology & Diabetes
                prader-willi syndrome,genotype,phenotype,endocrine,imprinting,snords
                Endocrinology & Diabetes
                prader-willi syndrome, genotype, phenotype, endocrine, imprinting, snords

                Comments

                Comment on this article