6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Learning to Reason with HOL4 tactics

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Techniques combining machine learning with translation to automated reasoning have recently become an important component of formal proof assistants. Such "hammer" tech- niques complement traditional proof assistant automation as implemented by tactics and decision procedures. In this paper we present a unified proof assistant automation approach which attempts to automate the selection of appropriate tactics and tactic-sequences com- bined with an optimized small-scale hammering approach. We implement the technique as a tactic-level automation for HOL4: TacticToe. It implements a modified A*-algorithm directly in HOL4 that explores different tactic-level proof paths, guiding their selection by learning from a large number of previous tactic-level proofs. Unlike the existing hammer methods, TacticToe avoids translation to FOL, working directly on the HOL level. By combining tactic prediction and premise selection, TacticToe is able to re-prove 39 percent of 7902 HOL4 theorems in 5 seconds whereas the best single HOL(y)Hammer strategy solves 32 percent in the same amount of time.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: not found
          • Article: not found

          A STATISTICAL INTERPRETATION OF TERM SPECIFICITY AND ITS APPLICATION IN RETRIEVAL

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Learning-Assisted Automated Reasoning with Flyspeck

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A Learning-Based Fact Selector for Isabelle/HOL

                Bookmark

                Author and article information

                Journal
                02 April 2018
                Article
                10.29007/ntlb
                1804.00595
                b00ae9bf-747e-4c00-a3c6-ce7442edc865

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                LPAR-21. 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning. EasyChair 2017
                cs.AI

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content288

                Most referenced authors49