0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic epidemiology of CVA10 in Guangdong, China, 2013–2021

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hand, Foot and Mouth Disease (HFMD) is a highly contagious viral illness primarily affecting children globally. A significant epidemiological transition has been noted in mainland China, characterized by a substantial increase in HFMD cases caused by non-Enterovirus A71 (EV-A71) and non-Coxsackievirus A16 (CVA16) enteroviruses (EVs). Our study conducts a retrospective examination of 36,461 EV-positive specimens collected from Guangdong, China, from 2013 to 2021. Epidemiological trends suggest that, following 2013, Coxsackievirus A6 (CVA6) and Coxsackievirus A10 (CVA10) have emerged as the primary etiological agents for HFMD. In stark contrast, the incidence of EV-A71 has sharply declined, nearing extinction after 2018. Notably, cases of CVA10 infection were considerably younger, with a median age of 1.8 years, compared to 2.3 years for those with EV-A71 infections, possibly indicating accumulated EV-A71-specific herd immunity among young children. Through extensive genomic sequencing and analysis, we identified the N136D mutation in the 2 A protein, contributing to a predominant subcluster within genogroup C of CVA10 circulating in Guangdong since 2017. Additionally, a high frequency of recombination events was observed in genogroup F of CVA10, suggesting that the prevalence of this lineage might be underrecognized. The dynamic landscape of EV genotypes, along with their potential to cause outbreaks, underscores the need to broaden surveillance efforts to include a more diverse spectrum of EV genotypes. Moreover, given the shifting dominance of EV genotypes, it may be prudent to re-evaluate and optimize existing vaccination strategies, which are currently focused primarily target EV-A71.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12985-024-02389-9.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability

          We report a major update of the MAFFT multiple sequence alignment program. This version has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update. This report shows actual examples to explain how these features work, alone and in combination. Some examples incorrectly aligned by MAFFT are also shown to clarify its limitations. We discuss how to avoid misalignments, and our ongoing efforts to overcome such limitations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies

            Large phylogenomics data sets require fast tree inference methods, especially for maximum-likelihood (ML) phylogenies. Fast programs exist, but due to inherent heuristics to find optimal trees, it is not clear whether the best tree is found. Thus, there is need for additional approaches that employ different search strategies to find ML trees and that are at the same time as fast as currently available ML programs. We show that a combination of hill-climbing approaches and a stochastic perturbation method can be time-efficiently implemented. If we allow the same CPU time as RAxML and PhyML, then our software IQ-TREE found higher likelihoods between 62.2% and 87.1% of the studied alignments, thus efficiently exploring the tree-space. If we use the IQ-TREE stopping rule, RAxML and PhyML are faster in 75.7% and 47.1% of the DNA alignments and 42.2% and 100% of the protein alignments, respectively. However, the range of obtaining higher likelihoods with IQ-TREE improves to 73.3-97.1%.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Nextstrain: real-time tracking of pathogen evolution

              Abstract Summary Understanding the spread and evolution of pathogens is important for effective public health measures and surveillance. Nextstrain consists of a database of viral genomes, a bioinformatics pipeline for phylodynamics analysis, and an interactive visualization platform. Together these present a real-time view into the evolution and spread of a range of viral pathogens of high public health importance. The visualization integrates sequence data with other data types such as geographic information, serology, or host species. Nextstrain compiles our current understanding into a single accessible location, open to health professionals, epidemiologists, virologists and the public alike. Availability and implementation All code (predominantly JavaScript and Python) is freely available from github.com/nextstrain and the web-application is available at nextstrain.org.
                Bookmark

                Author and article information

                Contributors
                gzzhr1981@126.com
                jimlu0331@163.com
                Journal
                Virol J
                Virol J
                Virology Journal
                BioMed Central (London )
                1743-422X
                30 May 2024
                30 May 2024
                2024
                : 21
                : 122
                Affiliations
                [1 ]School of Public Health, Southern Medical University, ( https://ror.org/01vjw4z39) Guangzhou, China
                [2 ]Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, ( https://ror.org/04tms6279) Guangzhou, China
                [3 ]Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, ( https://ror.org/04tms6279) Guangzhou, China
                [4 ]School of Public Health, Sun Yat-Sen University, ( https://ror.org/0064kty71) Guangzhou, China
                [5 ]School of Public Health, Guangdong Pharmaceutica University, ( https://ror.org/02vg7mz57) Guangzhou, China
                [6 ]School of Public Health, Jinan University, ( https://ror.org/02xe5ns62) Guangzhou, China
                [7 ]Shenzhen Nanshan Center for Disease Control and Prevention, ( https://ror.org/01jbc0c43) Shenzhen, China
                [8 ]Longhua District Center for Disease Control and Prevention, Shenzhen, China
                Article
                2389
                10.1186/s12985-024-02389-9
                11140982
                38816865
                afce9604-a5eb-463a-8160-0aa5406fb9e3
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 4 February 2024
                : 14 May 2024
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Microbiology & Virology
                coxsackievirus a10,hand,foot and mouth disease,enterovirus,phylogenetic,epidemiology

                Comments

                Comment on this article