10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biogenic habitat structure of seaweeds change along a latitudinal gradient in ocean temperature

      , , ,
      Journal of Experimental Marine Biology and Ecology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          The impacts of climate change in coastal marine systems.

          Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few 'leverage species' may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations' ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Attributing physical and biological impacts to anthropogenic climate change.

            Significant changes in physical and biological systems are occurring on all continents and in most oceans, with a concentration of available data in Europe and North America. Most of these changes are in the direction expected with warming temperature. Here we show that these changes in natural systems since at least 1970 are occurring in regions of observed temperature increases, and that these temperature increases at continental scales cannot be explained by natural climate variations alone. Given the conclusions from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report that most of the observed increase in global average temperatures since the mid-twentieth century is very likely to be due to the observed increase in anthropogenic greenhouse gas concentrations, and furthermore that it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica, we conclude that anthropogenic climate change is having a significant impact on physical and biological systems globally and in some continents.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Effects of Local Deforestation on the Diversity and Structure of Southern California Giant Kelp Forest Food Webs

                Bookmark

                Author and article information

                Journal
                Journal of Experimental Marine Biology and Ecology
                Journal of Experimental Marine Biology and Ecology
                Elsevier BV
                00220981
                April 2011
                April 2011
                : 400
                : 1-2
                : 264-271
                Article
                10.1016/j.jembe.2011.02.017
                afb6956e-9cb3-41eb-900b-969e204dcdc2
                © 2011

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article