48
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The emergence of antibiotic resistant bacteria in the healthcare is a serious concern. In the Healthcare premises precisely intensive care unit are major sources of microbial diversity. Recent findings have demonstrated not only microbial diversity but also drug resistant microbes largely habitat in ICU. Pseudomonas aeruginosa found as a part of normal intestinal flora and a significant pathogen responsible for wide range of ICU acquired infection in critically ill patients. Nosocomial infection associated with this organism including gastrointestinal infection, urinary tract infections and blood stream infection. Infection caused by this organism are difficult to treat because of the presence of its innate resistance to many antibiotics (β-lactam and penem group of antibiotics), and its ability to acquire further resistance mechanism to multiple class of antibiotics, including Beta-lactams, aminoglycosides and fluoroquinolones. In the molecular evolution microbes adopted several mechanism to maintain genomic plasticity. The tool microbe use for its survival is mainly biofilm formation, quorum sensing, and horizontal gene transfer and enzyme promiscuity. Such genomic plasticity provide an ideal habitat to grow and survive in hearse environment mainly antibiotics pressure. This review focus on infection caused by Pseudomonas aeruginosa, its mechanisms of resistance and available treatment options. The present study provides a systemic review on major source of Pseudomonas aeruginosa in ICU. Further, study also emphasizes virulence gene/s associated with Pseudomonas aeruginosa genome for extended drug resistance. Study gives detailed overview of antibiotic drug resistance mechanism.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs.

          There is an association between the development of antimicrobial resistance in Staphylococcus aureus, enterococci, and gram-negative bacilli and increases in mortality, morbidity, length of hospitalization, and cost of health care. For many patients, inadequate or delayed therapy and severe underlying disease are primarily responsible for the adverse outcomes of infections caused by antimicrobial-resistant organisms. Patients with infections due to antimicrobial-resistant organisms have higher costs (approximately 6,000-30,000 dollars) than do patients with infections due to antimicrobial-susceptible organisms; the difference in cost is even greater when patients infected with antimicrobial-resistant organisms are compared with patients without infection. Strategies to prevent nosocomial emergence and spread of antimicrobial-resistant organisms are essential.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biofilms and device-associated infections.

            Microorganisms commonly attach to living and nonliving surfaces, including those of indwelling medical devices, and form biofilms made up of extracellular polymers. In this state, microorganisms are highly resistant to antimicrobial treatment and are tenaciously bound to the surface. To better understand and control biofilms on indwelling medical devices, researchers should develop reliable sampling and measurement techniques, investigate the role of biofilms in antimicrobial drug resistance, and establish the link between biofilm contamination and patient infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pseudomonas Aeruginosa: Resistance to the Max

              Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us?
                Bookmark

                Author and article information

                Contributors
                Journal
                Genes Dis
                Genes Dis
                Genes & Diseases
                Chongqing Medical University
                2352-4820
                2352-3042
                17 April 2019
                June 2019
                17 April 2019
                : 6
                : 2
                : 109-119
                Affiliations
                [a ]Department of Biotechnology, Barkatullah University, Bhopal 462026, Madhya Pradesh, India
                [b ]Department of Biotechnology, Barkatullah University, Bhopal 462026, Madhya Pradesh, India
                [c ]Department of Research, Bhopal Memorial Hospital and Research Centre (BMHRC), Bhopal 462037, Madhya Pradesh, India
                Author notes
                []Corresponding author. preeti_pachori@ 123456yahoo.com
                Article
                S2352-3042(19)30017-0
                10.1016/j.gendis.2019.04.001
                6545445
                31194018
                afb4d422-a55e-44d5-9575-fcedbfd91e32
                © 2019 Chongqing Medical University. Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 28 February 2019
                : 9 April 2019
                Categories
                Article

                antibiotics,blood stream infections,infection,pathogen,resistance,urinary tract infections

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content400

                Cited by165

                Most referenced authors1,569