15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Prolifera-Green-Tide as Sustainable Source for Carbonaceous Aerogels with Hierarchical Pore to Achieve Multiple Energy Storage

      , , , , , , , ,
      Advanced Functional Materials
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Carbon materials for chemical capacitive energy storage.

          Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability.

            Nitrogen-doped carbon nanofiber webs (CNFWs) with high surface areas are successfully prepared by carbonization-activation of polypyrrole nanofiber webs with KOH. The as-obtained CNFWs exhibit a superhigh reversible capacity of 943 mAh g(-1) at a current density of 2 A g(-1) even after 600 cycles, which is ascribed to the novel porous nanostructure and high-level nitrogen doping. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors.

              Hierarchical porous nitrogen-doped carbon (HPNC) nanosheets (NS) have been prepared via simultaneous activation and graphitization of biomass-derived natural silk. The as-obtained HPNC-NS show favorable features for electrochemical energy storage such as high specific surface area (SBET: 2494 m(2)/g), high volume of hierarchical pores (2.28 cm(3)/g), nanosheet structures, rich N-doping (4.7%), and defects. With respect to the multiple synergistic effects of these features, a lithium-ion battery anode and a two-electrode-based supercapacitor have been prepared. A reversible lithium storage capacity of 1865 mA h/g has been reported, which is the highest for N-doped carbon anode materials to the best of our knowledge. The HPNC-NS supercapacitor's electrode in ionic liquid electrolytes exhibit a capacitance of 242 F/g and energy density of 102 W h/kg (48 W h/L), with high cycling life stability (9% loss after 10,000 cycles). Thus, a high-performance Li-ion battery and supercapacitors were successfully assembled for the same electrode material, which was obtained through a one-step and facile large-scale synthesis route. It is promising for next-generation hybrid energy storage and renewable delivery devices.
                Bookmark

                Author and article information

                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley-Blackwell
                1616301X
                December 2016
                December 21 2016
                : 26
                : 46
                : 8487-8495
                Article
                10.1002/adfm.201603933
                afb38ea1-cd8e-45e8-9009-7b186e6e2a86
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article