2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bursty gene expression and mRNA decay pathways orchestrate B cell activation

      research-article
      , *
      Science Advances
      American Association for the Advancement of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          This article reveals that “bursty” HLH gene expression and HLH mRNA decay pathways instruct clonal B cell activation.

          Abstract

          It is well established that the helix-loop-helix proteins, E2A and E2-2, promote B cell activation. Here, we examined how during the course of B cell activation E2A and E2-2 gene expression is regulated. We found that E2A and E2-2 mRNA abundance concomitantly increased in activated B cells. The increase in E2A and E2-2 mRNA abundance correlated with increased cell growth. Elevated E2A and E2-2 mRNA abundance was instructed by increased transcriptional bursting frequencies and elevated E2A and E2-2 mRNA half-lives. The increase in E2A and E2-2 bursting frequencies often occurred at shared interchromosomal transcriptional hubs. We suggest that in naïve B cells low E2A and E2-2 bursting frequencies and high E2A and E2-2 mRNA decay rates instruct noisy gene expression that allows a clonal and swift response to invading pathogens whereas in activated B cells increased transcriptional bursting and low mRNA decay rates dictate an activated B lineage gene program.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Nature, nurture, or chance: stochastic gene expression and its consequences.

          Gene expression is a fundamentally stochastic process, with randomness in transcription and translation leading to cell-to-cell variations in mRNA and protein levels. This variation appears in organisms ranging from microbes to metazoans, and its characteristics depend both on the biophysical parameters governing gene expression and on gene network structure. Stochastic gene expression has important consequences for cellular function, being beneficial in some contexts and harmful in others. These situations include the stress response, metabolism, development, the cell cycle, circadian rhythms, and aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme.

            Induced overexpression of AID in CH12F3-2 B lymphoma cells augmented class switching from IgM to IgA without cytokine stimulation. AID deficiency caused a complete defect in class switching and showed a hyper-IgM phenotype with enlarged germinal centers containing strongly activated B cells before or after immunization. AID-/- spleen cells stimulated in vitro with LPS and cytokines failed to undergo class switch recombination although they expressed germline transcripts. Immunization of AID-/- chimera with 4-hydroxy-3-nitrophenylacetyl (NP) chicken gamma-globulin induced neither accumulation of mutations in the NP-specific variable region gene nor class switching. These results suggest that AID may be involved in regulation or catalysis of the DNA modification step of both class switching and somatic hypermutation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhancer Control of Transcriptional Bursting.

              Transcription is episodic, consisting of a series of discontinuous bursts. Using live-imaging methods and quantitative analysis, we examine transcriptional bursting in living Drosophila embryos. Different developmental enhancers positioned downstream of synthetic reporter genes produce transcriptional bursts with similar amplitudes and duration but generate very different bursting frequencies, with strong enhancers producing more bursts than weak enhancers. Insertion of an insulator reduces the number of bursts and the corresponding level of gene expression, suggesting that enhancer regulation of bursting frequency is a key parameter of gene control in development. We also show that linked reporter genes exhibit coordinated bursting profiles when regulated by a shared enhancer, challenging conventional models of enhancer-promoter looping.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing - original draftRole: Writing - review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing - original draftRole: Writing - review & editing
                Journal
                Sci Adv
                Sci Adv
                sciadv
                advances
                Science Advances
                American Association for the Advancement of Science
                2375-2548
                December 2021
                03 December 2021
                : 7
                : 49
                : eabm0819
                Affiliations
                [1]Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92039, USA.
                Author notes
                [* ]Corresponding author. Email: cmurre@ 123456ucsd.edu
                Author information
                https://orcid.org/0000-0002-4664-4317
                https://orcid.org/0000-0003-2437-507X
                Article
                abm0819
                10.1126/sciadv.abm0819
                8641932
                34860551
                af63b990-5c7b-4087-bfae-a1884671e0ed
                Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

                History
                : 25 August 2021
                : 14 October 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: R01 AI082850
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: RO1 AI102853
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: RO1 AI100880
                Categories
                Research Resource
                Biomedicine and Life Sciences
                SciAdv r-resources
                Developmental Biology
                Molecular Biology
                Molecular Biology
                Custom metadata
                Penchie Limbo

                Comments

                Comment on this article