16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          A fast learning algorithm for deep belief nets.

          We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead

            Black box machine learning models are currently being used for high stakes decision-making throughout society, causing problems throughout healthcare, criminal justice, and in other domains. People have hoped that creating methods for explaining these black box models will alleviate some of these problems, but trying to explain black box models, rather than creating models that are interpretable in the first place, is likely to perpetuate bad practices and can potentially cause catastrophic harm to society. There is a way forward - it is to design models that are inherently interpretable. This manuscript clarifies the chasm between explaining black boxes and using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where interpretable models could potentially replace black box models in criminal justice, healthcare, and computer vision.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Generative adversarial networks

              Generative adversarial networks are a kind of artificial intelligence algorithm designed to solve the generative modeling problem. The goal of a generative model is to study a collection of training examples and learn the probability distribution that generated them. Generative Adversarial Networks (GANs) are then able to generate more examples from the estimated probability distribution. Generative models based on deep learning are common, but GANs are among the most successful generative models (especially in terms of their ability to generate realistic high-resolution images). GANs have been successfully applied to a wide variety of tasks (mostly in research settings) but continue to present unique challenges and research opportunities because they are based on game theory while most other approaches to generative modeling are based on optimization.
                Bookmark

                Author and article information

                Journal
                Journal of Information Technology Case and Application Research
                Journal of Information Technology Case and Application Research
                Informa UK Limited
                1522-8053
                2333-6897
                July 03 2023
                July 21 2023
                July 03 2023
                : 25
                : 3
                : 277-304
                Affiliations
                [1 ]City University of Hong Kong, Kowloon, Hong Kong SAR
                [2 ]Missouri University of Science and Technology, Rolla, Missouri, USA
                Article
                10.1080/15228053.2023.2233814
                af632416-ad21-456d-adb3-9b551e530e6e
                © 2023
                History

                Comments

                Comment on this article