6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Streptococcus pyogenes upregulates arginine catabolism to exert its pathogenesis on the skin surface

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap

          The Principal Component Analysis (PCA) is a widely used method of reducing the dimensionality of high-dimensional data, often followed by visualizing two of the components on the scatterplot. Although widely used, the method is lacking an easy-to-use web interface that scientists with little programming skills could use to make plots of their own data. The same applies to creating heatmaps: it is possible to add conditional formatting for Excel cells to show colored heatmaps, but for more advanced features such as clustering and experimental annotations, more sophisticated analysis tools have to be used. We present a web tool called ClustVis that aims to have an intuitive user interface. Users can upload data from a simple delimited text file that can be created in a spreadsheet program. It is possible to modify data processing methods and the final appearance of the PCA and heatmap plots by using drop-down menus, text boxes, sliders etc. Appropriate defaults are given to reduce the time needed by the user to specify input parameters. As an output, users can download PCA plot and heatmap in one of the preferred file formats. This web server is freely available at http://biit.cs.ut.ee/clustvis/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data

            Background RNA-seq is widely used for transcriptomic profiling, but the bioinformatics analysis of resultant data can be time-consuming and challenging, especially for biologists. We aim to streamline the bioinformatic analyses of gene-level data by developing a user-friendly, interactive web application for exploratory data analysis, differential expression, and pathway analysis. Results iDEP (integrated Differential Expression and Pathway analysis) seamlessly connects 63 R/Bioconductor packages, 2 web services, and comprehensive annotation and pathway databases for 220 plant and animal species. The workflow can be reproduced by downloading customized R code and related pathway files. As an example, we analyzed an RNA-Seq dataset of lung fibroblasts with Hoxa1 knockdown and revealed the possible roles of SP1 and E2F1 and their target genes, including microRNAs, in blocking G1/S transition. In another example, our analysis shows that in mouse B cells without functional p53, ionizing radiation activates the MYC pathway and its downstream genes involved in cell proliferation, ribosome biogenesis, and non-coding RNA metabolism. In wildtype B cells, radiation induces p53-mediated apoptosis and DNA repair while suppressing the target genes of MYC and E2F1, and leads to growth and cell cycle arrest. iDEP helps unveil the multifaceted functions of p53 and the possible involvement of several microRNAs such as miR-92a, miR-504, and miR-30a. In both examples, we validated known molecular pathways and generated novel, testable hypotheses. Conclusions Combining comprehensive analytic functionalities with massive annotation databases, iDEP (http://ge-lab.org/idep/) enables biologists to easily translate transcriptomic and proteomic data into actionable insights. Electronic supplementary material The online version of this article (10.1186/s12859-018-2486-6) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center

              The Pathosystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center (https://www.patricbrc.org). Recent changes to PATRIC include a redesign of the web interface and some new services that provide users with a platform that takes them from raw reads to an integrated analysis experience. The redesigned interface allows researchers direct access to tools and data, and the emphasis has changed to user-created genome-groups, with detailed summaries and views of the data that researchers have selected. Perhaps the biggest change has been the enhanced capability for researchers to analyze their private data and compare it to the available public data. Researchers can assemble their raw sequence reads and annotate the contigs using RASTtk. PATRIC also provides services for RNA-Seq, variation, model reconstruction and differential expression analysis, all delivered through an updated private workspace. Private data can be compared by ‘virtual integration’ to any of PATRIC's public data. The number of genomes available for comparison in PATRIC has expanded to over 80 000, with a special emphasis on genomes with antimicrobial resistance data. PATRIC uses this data to improve both subsystem annotation and k-mer classification, and tags new genomes as having signatures that indicate susceptibility or resistance to specific antibiotics.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Cell Reports
                Cell Reports
                Elsevier BV
                22111247
                March 2021
                March 2021
                : 34
                : 13
                : 108924
                Article
                10.1016/j.celrep.2021.108924
                33789094
                af5faa1e-c88d-4e2b-8054-ad13b2c2da1b
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article